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Abstract—Considering quantum signal transmission in the
underwater links with scattering, we investigate the quantum
channel model, the related capacity and secrecy performance.
Monte Carlo simulation results demonstrate that the polarization
angle change within [-20, 20] degrees accounts for 98%. We
propose a quantum channel model for underwater link with
scattering and theoretically investigate the capacity, where a
larger proportion of scattered photons and a larger variation
range of the polarization angle leads to lower quantum classical
capacity. We analyze the secret key rate of BB84 protocol
under unauthorized receiver attack (URA). The results show
the maximum secure transmission distance under the given
parameters of seawater decreases from 113 m to 58 m as the
probability that the eavesdropper receives scattered photons
increases from 0.1% to 10%.

I. INTRODUCTION

Quantum communication, which offers high security based

on some principles of quantum mechanics [1], has been

considered as a promising solution for cryptography. Further-

more, it is of great significance for future applications in

telecommunications, finance and strategy [2].

There are numerous ways to realize quantum bits in quan-

tum communication, and the most common one is to adopt

optical signal as carrier. The BB84 protocol is not only the

world’s first quantum key distribution (QKD) protocol, but also

the most practical one being widely adopted [3]. Up to now,

massive QKD experiments have been demonstrated worldwide

in hundreds of kilometers of optical fibers [4], [5] and free-

space air [6], [7]. In recent years, free-space QKD in a water
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environment has attracted much attention. Decoy-state QKD

experiments through 10-m and 30-m underwater channels

have been successfully demonstrated [8], [9]. However, one

of the challenges for underwater free-space quantum commu-

nications is to effectively transmit quantum states in noisy

environments. Note that there are a large number of scattering

particles in the seawater, leading to the change of the photon

transmission direction and the distortion of the polarization

state. It significantly limits the maximum achievable rate as

well as the communication distance [10]. Researches on sim-

ulations and experiments mainly focus on fidelity of photons

through underwater channels [11], [12]. The motivation of this

paper is to explore the communication performance in terms of

channel capacity and analyse the secrecy performance under

a special attack, unauthorized receiver attack (URA).

In this paper, we focus on the polarization states of received

scattered photons in underwater QKD and a quantum channel

model is derived from the polarization angle distribution of

received photons. Then, the maximum amount of classical

information through the scattering channel is theoretically cal-

culated by using Holevo-Schumacher-Westmoreland (HSW)

theorem in [13]. Previous studies mainly analyze two typi-

cal active eavesdropping methods, an intercept-resend attack

(IRA) and a photon-number-splitting (PNS) attack, in QKD

systems [14]. Here, we explore a passive eavesdropping attack,

URA, and calculate the secret key rate at different transmission

distances, since the scattered photons may be intercepted

by passive eavesdroppers due to the change of transmission

direction.

II. SCATTERING QUANTUM CHANNEL MODELING

A. Physical channel analysis

Consider an underwater optical wireless communication

(OWC) scenario, QKD, as shown in Fig. 1, where the trans-

mitter maps the information bits into several polarization states

and sends the polarized photons to the channel. A legitimate

receiver is placed in a line-of-sight (LOS) position at the same
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depth and makes a measurement on these polarized photons.

The photon transmission in the water includes the following

cases:

(i) Some of photons arrive directly at the receiver without

scattering.

(ii) Due to the massive particles especially the plankton in the

seawater, some of photons are scattered and fall outside

the receiving aperture, which can be treated as channel

loss. An eavesdropper may capture these photons to get

the information, threatening the security of communica-

tion.

(iii) Some scattered photons are still within the receiving

aperture, whose polarization may be changed leading to

errors of the received information.

Fig. 1. The propagation of the polarized photons in the water.

(a) (b)

(c) (d)

Fig. 2. The PDF of (a) polarization angle change of scattered photons in (a)
1-m link and in (b) 5-m link. The probability distribution of (c) the degree of
linear polarization and (d) the angle between the polarization plane and the
receiving plane for scattered photons.

To explore the polarization states of scattered photons, we

perform channel simulation based on photon tracing, where the

Mie scattering of photons by planktonic particles is considered

since plankton is widespread in Jerlov type I - III water

[15]. The number density and average diameter of planktonic

particles in the water are 109 /m3 and 10 um, and the

absorption coefficient and the scattering coefficient are 0.0820

/m and 0.0842 /m, close to Jerlov type II water. Assume that

the photosensitive area size of the single photon detector (SPD)

is 1.3 × 1.3mm2. 108 photons with a wavelength of 520 nm

are transmitted and the polarization state of photons can be

described by Stokes vectors calculated after each scattering.

For more details about the polarization state tracking, we refer

the readers to [16].

Fig. 2(a) and Fig. 2(b) shows the probability density dis-

tribution (PDF) of the polarization angle change ∆θ of the

scattered photons in the 1-m link and 5-m link. The cumulative

interval is 2 degrees. The proportion of the scattered photon

number to the received photon number is 0.03%. It is seen that

the dominant polarization angle change lies in the range [-2,

2] degrees and the probability within [-20, 20] degrees reaches

98%. The reason for the small change of photon polarization

angle is that most received photons are scattered only once.

The PDFs can be fitted by the Von Mises distribution with

parameter μ = 0 and k = 700, i.e.,

f (θ) =
ek cos(θ−μ)

2πI0 (k)
, (1)

where I0 (∗) is zero-order modified Bessel function and θ ∈
[−π, π]. As seen in Fig. 2(c), the proportion of degree of linear

polarization greater than 0.99 is 97.32%. Therefore, it can be

considered that the received scattered photons in the aligned

receiver are still linearly polarized. The angle φ between the

polarization plane of scattered photons and the receiving plane

is mainly distributed within 20 degrees accounting for 86.45%

in Fig. 2(d).

B. Equivalent quantum channel model

Based on the polarization states distribution in the previous

section, a equivalent quantum channel model is proposed. The

polarization state is one of the quantum states for photons,

and the polarization state of a linearly polarized photon with

polarization angle θ is denoted as

|ψ〉 = cos θ |0〉+ sin θ |1〉=

[

cos θ
sin θ

]

. (2)

The density matrix can be written as

ρ = |ψ〉 〈ψ|=

[

cos2θ cos θ sin θ
sin θ cos θ sin2θ

]

. (3)

The linearly polarized photons are transmitted through the
scattering medium, the received scattered photons maintain
a high degree of linear polarization from previous simulation
results. Therefore, the quantum channel model can be char-
acterized by the following state evolution matrix, which is
a positive definite and trace preserving linear transformation
acting on the density matrix space of quantum states,

N(ρ) = (1− p)

[

cos2θ cos θ sin θ
sin θ cos θ sin2θ

]

+

p
∫ θ+π

2

θ−π
2

f (θ′ − θ)×

[

cos2θ′ cos θ′ sin θ′

sin θ′ cos θ′ sin2θ′

]

dθ′,

(4)

where p is the probability of the received scattered photons;

f (θ′ − θ) is the probability density distribution of change in

polarization angle; (1− p) is the probability of the received

photons without scattering whose density matrix remains the

same. Note that as the period of the polarization direction is

π. For instance, 45 degrees and −135 degrees represent the

same direction of polarization. The polarization angle of the
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scattered photons θ′ ∈ [θ−π/2, θ+π/2]. When the polariza-

tion angle θ′ is uniformly distributed with f (θ′ − θ) = 1/π,

it is equivalent to a typical depolarized channel

N(ρ) = (1− p) ρ+ p

[

1
2 0
0 1

2

]

=(1− p) ρ+p
I

2
. (5)

III. CLASSICAL CAPACITY OF QUANTUM CHANNELS WITH

JOINT MEASUREMENT SETTING

The HSW theorem defines the maximum classical amount
of information that can be obtained through a noisy quantum
channel when the output is measured by joint measurement
setting [13]. The classical capacity of a quantum channel is
given by

C (N) = max
pi, ρi

χ = max
pi, ρi

[

S

(

N

(

∑

i

piρi

))

−

∑

i

piS (N (ρi))

]

,

(6)

where χ is called Holevo quantity; S (ρ) = −Tr (ρ log (ρ))
is von Neumann entropy which measures the information

contained in the quantum system ρ. When transmitting any

two linear polarization states, for photons with probability p1,

we have

ρ1 =

[

cos2x cosx sinx
sinx cosx sin2x

]

, (7)

and for photons with probability p2 = 1−p1, we have

ρ2 =

[

cos2 (x+ y) cos (x+ y) sin (x+ y)
sin (x+ y) cos (x+ y) sin2 (x+ y)

]

.

(8)
The density matrix at the receiver is

N

(

∑

i

piρi

)

= p1 (1− p)

[

cos2x sin (2x) /2
sin (2x) /2 sin2x

]

+p1p
∫ x+π

2

x−π
2

f (θ′ − x)

[

cos2θ′ sin (2θ′) /2
sin (2θ′) /2 sin2θ′

]

dθ′

+(1− p1) (1− p)

[

cos2 (x+ y) sin (2x+ 2y) /2
sin (2x+ 2y) /2 sin2 (x+ y)

]

+(1− p1) p
∫ x+y+π

2

x+y−π
2

f (θ′ − x− y)

[

cos2θ′
sin(2θ′)

2
sin(2θ′)

2
sin2θ′

]

dθ′

.

(9)

For simplicity of notation, we define variables a and b to

replace the integral term, and Eq. (9) can be rewritten as

N

(

∑

i

piρi

)

=

[

n1 n2

n2 1− n1

]

, (10)

where

n1 = p1p
((

a− 1
2

)

cos (2x)− b sin (2x) + 1
2

)

p1 (1− p) cos2x+ (1− p1) (1− p) cos2 (x+ y) + (1− p1)
×p

((

a− 1
2

)

cos (2x+ 2y)− b sin (2x+ 2y) + 1
2

)

,
(11)

n2 = p1p
(

b cos (2x) +
(

a− 1
2

)

sin (2x)
)

+ 1
2p1 (1− p) sin (2x) + 1

2 (1− p1) (1− p) sin (2x+ 2y)
+ (1− p1)× p

(

b cos (2x+ 2y) +
(

a− 1
2

)

sin (2x+ 2y)
)

,
(12)

∫ π
2

−
π
2

f
(

θ′
)

×

[

cos2θ′ cos θ′ sin θ′

sin θ′ cos θ′ sin2θ′

]

dθ′
∆
=

[

a b
b 1− a

]

.

(13)
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Fig. 3. Classical capacity versus (a) the probability of received scattered
photons and (b) the standard deviation of truncated Gaussian distribution of
polarization angle.

Then, the classical capacity can be obtained as

C (N)

= max
pi, ρi

⎛

⎜

⎜

⎜

⎝

H2

(

1

2
+ 1

2

√

[ (

4p1sin
2y (p1 − 1) + 1

)

×
(

(2p− 2pa− 1)2 + 4p2b2
)

]

)

−H2

(

1

2
+ 1

2

√

(2p− 2pa− 1)2 + 4p2b2
)

⎞

⎟

⎟

⎟

⎠

,

(14)

where H2 (x) = −xlog2x − (1− x) log2 (1− x) is binary

entropy function. Note that when two orthogonal states with

probability 1
2 are transmitted (y = π

2 and p1 = 1
2 ), 4p1

2sin2y−
4p1sin

2y+1 = 0 and the first term in Eq. (14) has a maximum

value of 1. Then, the maximum capacity is given by

C (N) = 1−H2

(

1

2
+

1

2

√

(2p− 2pa− 1)
2
+ 4p2b2

)

.

(15)

The capacity are related to the probability distribution of

polarization angle change and the probability of receiving the

scattered photons.

We calculate variables a and b according to the Eq. (13)

when the polarization angle change (θ′ − θ) ∈ [−π/2, π/2]
satisfies truncated Gaussian distribution or Von Mises dis-

tribution in Fig. 2(a). Given a and b, the classical capacity

of quantum channels is calculated under different probability

of received scattered photons p as shown in Fig. 3(a). It is

seen that the capacity decreases as the proportion of scattered

photons increases. For Von Mises distribution distribution in

Fig. 2(a), when received photons are all scattered photons

(p = 1), the channel capacity decreases slightly to 0.93.

From Fig. 3(b), larger standard deviation σ of the truncated

Gaussian distribution of polarization angle leads to lower

channel capacity. When p = 1 and σ = 1, the capacity

decreases to 0.005.

IV. SECRET KEY RATE OF BB84 PROTOCOL UNDER AN

URA

In BB84 protocol, Alice and Bob exchange classical se-

quences encoded in non-orthogonal quantum states over the

quantum channel to impede eavesdropping the quantum states

without error. Since Bob measures the output independently,

the capacity is equal to the maximal mutual information,

which is not greater than the classical capacity with joint

measurement setting calculated in Section III [17], [18].

Fig. 4 shows the forward transition probability of BB84

protocol after independent measurement. Assume a1 to a4 are
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Fig. 4. Forward transition probability.

transmitted with respective probabilities of q1 to q4. When

q1 = q2 = q3 = q4 = 1/4, the maximum mutual information

is

max
qi

I (A;B) = 1 + 1
2 (1−Q) log

(

1
2 (1−Q)

)

+ 1
2Q log( 12Q)

= 1
2 (1−H2 (Q)) = 1

2 (1−H2 (p− pa)) ,
(16)

where Q is the error probability due to scattering, given by

Q =

∫ θt+
π
2

θt−
π
2

f (θr − θt)cos
2
(

θr −
(

θt+
π

2

))

dθr=p (1− a) ,

(17)

where θt is the polarization angle of transmitted photons; θr is

the polarization angle of received photons; f (θr − θt) is the

probability distribution of change in the polarization angle;

p is the probability of received scattered photons; and a is

defined in Eq. (13).

Since the scattering will cause the photon transmission

direction change, and the scattered photons may be intercepted

by passive eavesdroppers, non-ideal single photon source will

lead to information leakage. However, it is difficult for both

the transmitter and the receiver to detect whether there is an

eavesdropper stealing the scattered photons. It is necessary to

investigate the secrecy performance if there exists an URA.

Assume that Alice sends an n-photon pulse, where the photon

number n follows the Poisson distribution with mean u. The

transmission rates due to the channel absorption and scattering

are ta = e−μaL and ts = e−μsL, respectively, where μa is

the absorption coefficient, μs is the scattering coefficient and

L is the transmission distance. The total transmission rate is

t = tats. When Alice sends the pulse with n photons, due to

the absorption and scattering, the probability of at least one

photon received by Bob is 1 − (1− t)
n

[19]. Bob’s average

count rate per pulse is qu =
∞
∑

n=0

un

n! e
−u × (1− (1− t)

n
) =

1−e−ut. Here, we mainly study the effect of scattered photons

and dark count is not taken into account. The average mutual

information per pulse between Alice and Bob can be expressed

as

I (A;B) =
1

2
qu × (1−H2 (Q)) . (18)

When Alice sends the multiple-photon pulse and Bob’s

detector responds, Eve may capture the scattered photons

to eavesdrop useful information. Assuming the worst case,

Bob’s detector also responds when Eve receives at least

one scattered photon. Eves average count rate per pulse is
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Fig. 5. (a) The relation of secret key rate and distance for different
distributions of polarization angle (receiving probability of Eve=1%). (b) The
relation of secret key rate and distance under different receiving probabilities
of Eve (truncated Gaussian distribution (σ = 0.2)).

qm =
∞
∑

n=2

un

n! e
−u ×

(

1− (1− t′)
n)

= 1 − e−ut′ − ut′e−u,

where t′ = ηta (1− ts) and η is the probability of residual

scattered photons received by Eve. The mutual information

between Alice and Eve is

I (A;E) =
1

2
qm × (1−H2 (Q

′)) , (19)

where Q′ =
∫ θt+

π
2

θt−
π
2

f (θr′ − θt)cos
2
(

θr′ −
(

θt+
π
2

))

dθr′ is

the error probability due to the scattered photons received by

Eve. The secret key rate in the presence of an unauthorized

receiver attack is

Rs = max{I (A;B)− I (A;E) , 0}. (20)

Let μa = 0.0820, μs = 0.0842, close to Jerlov type II

water. u= 0.1. Fig. 5(a) shows the secret key rate varies with

distance when probability of receiving scattered photons of

Eve=1%. As photons travel longer distances, more photons are

scattered and more information is leaked. Therefore, the secret

key rate is decreasing gradually with the distance. Assume

that the distribution for polarization angle satisfies truncated

Gaussian distributions (the standard deviation σ = 0.2, 0.5)

and the Von Mises distribution from simulation results in

Section II-A, respectively. It is seen that the secret key rate

of the same transmission distance decreases as the variation

range of polarization angle decreases. The reason is that the

scattered photons received by Eve contain more information

for smaller change of the polarization angle, leading to lower

secret key rate. Fig. 5(b) shows the secret key rate varies with

distance under different receiving probabilities η of Eve. When

the probability that Eve receives scattered photons increases

from 0.1% to 10%, the maximum secure transmission distance

under the given parameters of seawater decreases from 113 m

to 58 m. As the receiving probability η decreases, both the

secure transmission distance and secret key rate are growing

steadily. There are two special cases, polarization angle change

satisfies the uniform distribution in Fig. 5(a) or receiving

probability of Eve η = 0% in Fig. 5(b), corresponding to

the zero mutual information of Eve.

V. CONCLUSION

In this work, an underwater quantum channel with scattering

is investigated. The Monte Carlo simulations show that the

received scattered photons still maintain a high degree of linear
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polarization and the probability within [-20, 20] degrees ac-

counts for 98%. The quantum classical capacity is analytically

derived based on the proposed quantum channel model, where

a larger variation of polarization angle and a larger probability

of scattered photons will lead to a lower capacity. The secret

key rate of BB84 protocol under unauthorized receiver attack

is deduced theoretically in the scattering link, and the results

show that the maximum secure transmission distance under

the given parameters of seawater decreases from 113 m to 58

m as the probability that the eavesdropper receives scattered

photons increases from 0.1% to 10%.
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