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Covert Water-to-Air Optical Wireless
Communication Based on an Adversarial

Autoencoder
Qingqing Hu, Nuo Huang, Yuwei Chen, and Chen Gong

Abstract—This paper proposes a covert scheme based on an
adversarial autoencoder for water-to-air (W2A) optical wireless
communication (OWC) systems. We develop optimization algo-
rithms to train the proposed covert scheme, such that a watchful
adversary cannot distinguish the generated covert signal from
artificial noise (AN), and a legitimate receiver can demodulate
the covert signal correctly. The validation set results show that a
high level of covertness performance can be achieved in W2A
channels. In addition, the proposed scheme is tested under
different receiver noise intensities, block lengths and code rates,
where linear block codes (LBCs) are adopted as the performance
comparison benchmark. The minimum block error rate (BLER)
under hard decision and the minimum Jensen-Shannon (JS)
divergence between the covert signal and AN among all LBC
groups are both higher than those of the proposed scheme,
while the minimum BLER under soft decision with blind channel
estimation is close to that of the proposed scheme. We further
establish an experimental W2A-OWC system to verify the scheme
performance under different wave intensities and position offsets.
It is shown that the BLER of the proposed scheme is slightly
higher than that of LBCs, while the JS divergence of the proposed
scheme is significantly lower than that of LBCs. The related code
will be available at https://github.com/qingqinghu-Ricky/AAE-
for-covert-communication upon publication.

Index Terms—Covert scheme, water-to-air, optical wireless
communication, adversarial autoencoder.

I. INTRODUCTION

Nowadays, there has been growing demands for under-
water applications, such as oceanic studies, marine resource
exploration, and underwater rescue [1]. Consequently, it is
imperative to establish direct communication across the water-
air interface [2]. However, underwater radio frequency signal
experiences significant signal absorption, and acoustic signal
exhibits high latency [3]. Optical wireless communication
(OWC) is a highly promising solution for water-to-air (W2A)
communication, offering higher data rates and lower transmis-
sion latency at medium to short distances.
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In W2A-OWC systems, the water surface fluctuation and
refraction effects cause directional jitter of the light beam
and alterations in light intensity distribution, which further
increase the probability of information leakage [4]. Especially,
the communication behaviors can be detected by a watchful
adversary (Willie) in outdoor W2A-OWC systems, which
threatens the stability of communication links. Therefore,
covert communications, also known as low-probability-of-
detection communications, are required to hide the existence of
wireless communications and effectively improve the system
security [5].

Recent researches on covert communication schemes in
different scenarios can be characterized into several categories.
Several beamforming schemes based on multiple antennas
were designed to improve the covert communication perfor-
mance in millimeter-wave communication systems [6], multi-
input multi-output systems [7], and frequency-diverse-array-
aided near-field communication systems [8]. Moreover, in up-
link non-orthogonal multiple access (NOMA) systems [9] and
satellite-related NOMA systems [10], a covert user transmitted
the private message assisted by a reliable user transmitting
the public message. Artificial noise (AN) or jamming can
be adopted by a multi-antenna transmitter [11], a friendly
jammer [12], [13], and a cognitive jammer [14] to cover
covert information transmission, respectively. Several covert
transmission parameters can be optimized under natural noise.
For instance, the probability of channel selection [15], the
flying location and the transmitted power of unmanned aerial
vehicle (UAV) [16], the resource allocation and UAV trajectory
[17], the transmission power and the number of tolerable slots
[18] were optimized to enhance the communication rates under
covertness constraints. Assisted by intelligent reflecting sur-
face (IRS), the signal power received at the legitimate receiver
can be strengthened and the signal power received at Willie
can be weakened in [19]–[21]. Furthermore, several channel
inverse power control schemes were adopted in internet-of-
things systems [22] and communication systems with finite
block length [23] to guarantee a constant signal power at
the receiver and hide the transmitter from Willie. In terms
of covert signal design, the information was hidden in the
index of spreading codes [24], the correlation coefficients of
two consecutive Gaussian sequences [25], and the parameters
of stable non-Gaussian noise sequences [26], respectively.
Furthermore, different covert signals were designed, such as
Faster-than-Nyquist signals [27], chaotic pseudo orthogonal
signals [28], and distance-adaptive absorption peak modulation
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in Terahertz covert communications [29]. Some existing covert
schemes require additional antennas, auxiliary users, jammers,
IRS, or power, which cannot be applied in resource-limited
scenarios. In addition, previous covert schemes based on
transmission parameter optimization under nature noise are
not suitable for scenarios with relatively low natural noise.

In this work, we propose a novel covert scheme for W2A-
OWC systems. Different from the previous covert signal
design schemes requiring manual feature extraction, such as
the index of spread spectrum codes in [24] and the correlation
coefficients in [25], we adopt an adversarial autoencoder
(AAE) for nonlinear coding where the covert information is
automatically hidden in the generated pseudorandom signals
during the coding process. Compared with the covert scheme
in our previous work [30] requiring strong ambient radiation
to achieve signal covertness, the completely different scheme
proposed in this work is more robust to ambient radiation
intensity and can also be applied in weak ambient radiation
scenarios. In addition, the proposed covert communication
scheme can also be adopted for other OWC scenarios with
intensity modulation/direct detection (IM/DD) and random
channel fading, such as visible light communication and free-
space optical systems. After replacing the W2A-OWC channel
with another channel model, the scheme can be re-trained and
the network parameters will be updated.

The contributions of this work can be summarized as
follows:

1) We propose a covert scheme in dynamic W2A-OWC
scenarios based on an AAE to generate pseudorandom
signals. The proposed scheme hides the covert infor-
mation in the transmitted signals without needing extra
assistance resources, such as antennas, user, and IRS. We
develop an optimization algorithm for training the covert
scheme, such that Willie cannot distinguish the signal
from AN, and Bob can demodulate the covert signal
correctly.

2) We test the proposed scheme under different receiver
noise intensities, block lengths, and code rates, and adopt
linear block codes (LBCs) as the performance comparison
benchmark. After traversing all LBC groups, the mini-
mum block error rate (BLER) under hard decision and
the minimum Jensen-Shannon (JS) divergence between
the covert signals and AN of LBCs are both higher than
those of the proposed scheme, while the minimum BLER
under soft decision with blind channel estimation is close
to that of the proposed scheme.

3) We establish an experimental W2A-OWC system under
weak ambient radiation by adopting an infrared light-
emitting diode (LED) to achieve covertness. After con-
ducting experimental channel measurements, we train the
proposed scheme and generate the transmitted signals.
The experimental results under different wave intensities
and position offsets indicate that the demodulation error
rate of the proposed scheme is slightly higher than that of
LBCs, while the JS divergence of the proposed scheme
is significantly lower than that of LBCs.

The remainder of this paper is organized as follows. In

Section II, we introduce the W2A-OWC system model. In
Section III, we propose a covert scheme based on AAE, and
develop the network optimization and training process. In
Section IV, we numerically evaluate the proposed scheme on
W2A channels, and test the proposed scheme under differ-
ent receiver noise intensities, block lengths, code rates, and
Willie’s positions. We further compare the proposed scheme
with LBCs as the benchmark. In Section V, we experimentally
investigate the detection and covertness performance of the
proposed scheme. Finally, we conclude this work in Section
VI.

Submarine (Alice)

Random surface 

fluctuation

UAV (Bob)

UAV (Willie)

Plankton

Fig. 1. Illustration of a W2A-OWC system under weak ambient radiation.

II. SYSTEM MODEL

We consider a W2A-OWC system as shown in Fig. 1. Under
weak ambient radiation, an underwater transmitter (Alice)
modulates the information bits to the emitted light intensity
of an LED, and sends the modulated signal to a legitimate
receiver (Bob) in the air, while an adversary receiver (Willie)
tries to detect the communication behavior between Alice and
Bob. Both Bob and Willie adopt an avalanche photodiode
(APD) to receive signals, due to its higher sensitivity, speed,
gain and larger detection dynamic range compared to standard
PIN photodiode [31]. Given the positions and parameters
of the transmitter and receiver, underwater scattering and
absorption coefficients, and the slope angle of water surface,
the W2A channel gain h can be calculated from the theoretical
model of Eq. (20) in [4]. In addition, the channel gain can be
measured by processing experimental data in [3]. As a result
of random fluctuation of the water surface, the channel gains
vary randomly with time, which can be modeled as flat block
fading [3], [32]. Considering the nonlinearity and noise of
APDs, the received signals in electrical-domain are given by
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Fig. 2. Illustration of the covert scheme in a W2A-OWC system.
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(1)
where x is the transmitted signal; h is the W2A channel gain;
b is ambient light intensity; ηA is APD quantum efficiency; ηL
is the electro-optical conversion efficiency of LED; M0 is the
initial multiplication factor of APDs; S is the designed param-
eter for achieving an expected gain; MA is the amplification
factor of the circuit; nr is the additive white Gaussian noise
(AWGN). Detailed parameters of the W2A-OWC system will
be provided in the subsequent simulations of Section IV and
experiments of Section V.

III. COVERT SCHEME DESIGN

A. Covert Signal Generation Based on an AAE

The covert communication scheme in a W2A-OWC system
is shown in Fig. 2. Alice intermittently switches between
transmitting covert signals and AN, and the received signals at
Bob and Willie suffer random link gain variation and receiver
noise.

In the covert scheme training phase, an imaginary Willie
is introduced as a reference to the covert signal generation at
Alice, and the imaginary Willie’s position can be set according
to a desired covert region. The AAE-based covert scheme
consists of two parts: a generative adversarial network (GAN)
and an autoencoder (AE). The GAN consists of the covert
signal generator at Alice and the discriminator at imaginary
Willie to improve the signal’s covertness. The AE consists of
the covert signal generator at Alice and the decoder at Bob
to achieve reliable demodulation at Bob. The training process
iteratively enhances the Willie’s capability of discriminating
whether the received signals come from covert data or AN,

Alice’s capability of generating the covert signals, and Bob’s
capability of demodulating the received signal, establishing an
adversarial interplay between them. In this way, the distribu-
tion of the generated signal becomes close to that of noise, as
measured by the JS divergence. After the training process,
the generated signal exhibits high levels of covertness and
demodulation accuracy.

In the application phase, the trained network and parameters
are deployed to Alice and Bob. The JS divergence between the
received covert signals and AN remains sufficiently small for
arbitrary actual Willie within the covert region, indicating that
the proposed scheme can guarantee the covertness. It means
that the actual Willie is not required to be in the same location
or uses the same discriminator network as that in the training
phase. The neural networks for Alice, Bob and Willie are
shown in Fig. 3.

1) Network of Covert Signal Generator: Alice transforms
a covert message of k bits to corresponding one-hot encoding
representation m. The one-hot code m = [m1,m2, · · · ,m2k ]
and random vector t = [t1, t2, · · · , tn] are sent into the
covert signal generator network Υa to generate the covert
signal vector xc = [xc1, xc2, · · · , xcn], where n is the size of
encoded block. Vector t is adopted to randomize the generation
process and produce different xc for the same message at
different time. In Alice’s network of covert signal generator,
five dense layers with layer normalization and LeakyReLU
activation function are utilized to achieve dimension trans-
formation, feature extraction and information encoding. The
network topology as well as input and output dimensions of
each layer are shown in the second subfigure of Fig. 3. AN
vector xan is produced by an AN generator to confuse Willie.
The distribution of AN is same as that of receiver noise, such
as Gaussian distribution. Alice intermittently switches between
transmitting covert signals xc and AN xan.

2) Network of Discriminator: After the signals passing
through the W2A channel, Willie detects the received signal
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Fig. 3. Structure of neural networks for Alice, Bob and Willie.
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TABLE I
SPACE AND TIME COMPLEXITY OF ALICE’S, BOB’S AND WILLIE’S NETWORKS.

Network

Complexity
Space : Number of (Layers,Weights,Biases) Time : Number of FLOPs

Alice
(
5,

(
2k + 2n

)
× 128 + 131072, 768 + n

)
2k+8 + 512n+ 269832

Bob
(
5,

(
2k + n

)
× 128 + 49152, 512 + 2k

)
2k+8 + 256n+ 103432

Willie (5, 128n+ 49280, 513) 256n+ 99584

vector y = [y1, y2, · · · , yn] and outputs a scalar p which
represents the confidence probability of y belonging to the
samples of learned distribution (i.e., AN distribution). The
discriminator network Υw at Willie is composed of five dense
layers with LeakyReLU activation function, and the last layer
transforms the feature space to a scalar. The network topology
as well as input and output dimensions of each layer are shown
in the first subfigure of Fig. 3.

3) Network of Covert Signal Decoder: The decoder net-
work Υb at Bob is also composed of five dense layers with
layer normalization and LeakyReLU activation function. The
network topology as well as input and output dimensions of
each layer are shown in the third subfigure of Fig. 3. The
received covert signal vector y′ = [y′1, y

′
2, · · · , y′n] at Bob is

demodulated by the decoder network to output the estimated
code m′ =

[
m′

1,m
′
2, · · · ,m′

2k

]
. Bob eventually predicts the

covert message by performing a classification on m′.

Since Bob is deployed on a resource-constrained UAV, the
complexity of the proposed scheme needs to be taken into
consideration. The space complexity and time complexity of
Alice’s, Bob’s and Willie’s networks are shown in Table I.
The space complexity corresponds to the number of param-
eters in the network, including layers, weights, and biases.
The time complexity can be characterized by the number of
floating point operations (FLOPs). The number of FLOPs of a
dense layer with input dimension Idim and output dimension
Odim is 2IdimOdim. The number of FLOPs of the layer
normalization with dimension Idim is 8Idim +2. The number
of FLOPs of a LeakyReLU activation function layer with
dimension Idim is 2Idim. The total number of FLOPs can
be calculated by summing the number of FLOPs of each
layer in the network. Some commercial embedded computing
boards are available for machine learning (ML)/deep learning
(DL) applications within UAVs. For example, the low-power
Nvidia Jetson boards are designed for accelerating ML/DL
applications, and its version Jetson Nano released in 2019 can
run 4.72 × 1011 FLOPs per second under power 5 to 10 W
[33]. In addition, the drone manufacturer DJI has launched
Nvidia Tegra TK1-powered "Manifold" embedded computer
for performing ML/DL tasks in 2015 [34]. In recent years, the
DL algorithms for object detection [35], weed identification
[36], and damage assessment [37] have been investigated for
UAV-based systems. It is shown that the FLOP consumption
of UAV-deployed DL networks in [35] and [37] is much larger
than that of the proposed scheme in this paper, indicating the
feasibility of the proposed scheme running on UAVs.

B. Optimization Algorithm for Covert Scheme

During the training process for each batch of size N , we
develop the optimization algorithm to alternatively optimize
Willie’s network, Alice’s network and Bob’s network. The
loss function and parameter update of each network are
designed to achieve higher stability and faster convergence.
The optimization algorithm for training the proposed scheme
is summarized in Algorithm 1.

1) Optimization of Discriminator: When optimizing
Willie’s discriminator network Υw, we first transform a
covert information bit set into a one-hot code set denoted as{
m(i)

}N

i=1
. We sample a random vector set

{
t(i)

}N

i=1
and an

AN set
{
xan

(i)
}N

i=1
from a Gaussian distribution N (0, 1).

After passing through the W2A channel between Alice and
Willie (The channel mapping is denoted as Hw), the i-th covert
signal arrived at Willie is denoted as Hw

(
Υa

(
m(i), t(i)

))
,

and the i-th AN arrived at Willie is denoted as Hw

(
xan

(i)
)
,

where Υa is Alice’s generator network. The outputs of Willie’s
discriminator network for the i-th covert signal and the i-th
AN are Υw

(
Hw

(
Υa

(
m(i), t(i)

)))
and Υw

(
Hw

(
xan

(i)
))

,
respectively. We adopt the loss function Lw of Wasserstein
GAN with gradient penalty (WGAN-GP) in [38] as

Lw =
1

N

∑N

i=1


Υw

(
Hw

(
Υa

(
m(i), t(i)

)))
−

Υw

(
Hw

(
xan

(i)
))

+

λ
(∥∥∇c(i)Υw

(
c(i)

)∥∥
2
− 1

)2
, (2)

where c(i) = ϵ(i)Hw

(
xan

(i)
)

+(
1− ϵ(i)

)
Hw

(
Υa

(
m(i), t(i)

))
, and ϵ(i) follows a uniform

distribution between 0 and 1, denoted as U (0, 1). WGAN-
GP is an improved version of GAN, which shows
faster convergence and higher stability of optimization
process. After the gradient backpropagation, parameter set
W = {w1, w2, · · · } of the discriminator network is updated
with the Adam optimizer, where wi is the i-th weight or bias
in the network.

2) Optimization of Covert Signal Generator : When opti-
mizing Alice’s generator network Υa, we sample a random
vector set

{
t(i)

}N

i=1
and send it to the covert signal generator

along with
{
m(i)

}N

i=1
. After covert signals pass through

the W2A channel and arrive at receivers, the i-th output of
Willie’s discriminator is p = Υw

(
Hw

(
Υa

(
m(i), t(i)

)))
and

the i-th output of Bob’s decoder network Υb is m′(i) =
Υb

(
Hb

(
Υa

(
m(i), t(i)

)))
, where Hb is the W2A channel

mapping between Alice and Bob. The loss function La of
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generator is derived from the weighted sum of the two terms
as

La =
1

N

∑N

i=1

 −λwΥw

(
Hw

(
Υa

(
m(i), t(i)

)))
+

λbfCEloss

(
m′(i),m(i)

)
,

(3)
where λw and λb are weights, and fCEloss

(
m′(i),m(i)

)
=

−
∑2k

q=1 m
(i)
q log

(
m

′(i)
q

)
is the cross-entropy loss function.

The first term in Eq. (3) is the loss function for generator
making the distribution of covert signals close to that of AN,
while the second term is the loss function for decoder improv-
ing the demodulation performance of covert signals. After the
gradient backpropagation, parameter set A = {a1, a2, · · · } of
the generator network is updated with the Adam optimizer.

Algorithm 1: Covert Scheme Training
Input: Batch size N ; number of discriminator

iterations per generator iteration ndisc; gradient
penalty coefficient λ; cross entropy loss
function fCEloss; W2A channel mapping
functions Hw and Hb; weights λb and λw;
initial parameter set W of discriminator; initial
parameter set A of generator; initial parameter
set B of decoder; Alice’s network Υa; Bob’s
network Υb; Willie’s network Υw.

1 while W , A, B have not converged do
2 for j = 1, · · · , ndisc do
3 Input a one-hot code set

{
m(i)

}N

i=1
;

4 Sample a random vector set{
t(i)

}N

i=1
∼ N (0, 1);

5 Sample a AN set
{
xan

(i)
}N

i=1
∼ N (0, 1);

6 c(i) ← ϵ(i)Hw

(
xan

(i)
)
+(

1− ϵ(i)
)
Hw

(
Υa

(
m(i), t(i)

))
,

ϵ(i) ∼ U (0, 1);
7 Lw ←

1
N

∑N
i=1


Υw

(
Hw

(
Υa

(
m(i), t(i)

)))
−

Υw

(
Hw

(
xan

(i)
))

+

λ
(∥∥∇c(i)Υw

(
c(i)

)∥∥
2
− 1

)2
;

8 W ← Adam (∇WLw,W) ;
9 end

10 Sample a random vector set
{
t(i)

}N

i=1
∼ N (0, 1);

11 La ←

1
N

∑N
i=1

 −λwΥw

(
Hw

(
Υa

(
m(i), t(i)

)))
+

λbfCEloss

(
m′(i),m(i)

)
;

12 A ← Adam (∇ALa,A);
13 Sample a random vector set

{
t(i)

}N

i=1
∼ N (0, 1);

14 Lb ←
1
N

∑N
i=1

[
fCEloss

(
Υb

(
Hb

(
Υa

(
m(i), t(i)

)))
,m(i)

)]
;

15 B ← Adam (∇BLb,B).
16 end

3) Optimization of Covert Signal Decoder: When optimiz-
ing Bob’s decoder network Υb, we sample a random vector

set
{
t(i)

}N

i=1
and send it to the covert signal generator along

with
{
m(i)

}N

i=1
. The i-th output of Bob’s decoder network

Υb is m′(i) = Υb

(
Hb

(
Υa

(
m(i), t(i)

)))
. The loss function

Lb of Bob’s decoder network is calculated as

Lb =
1

N

∑N

i=1

[
fCEloss

(
m′(i),m(i)

)]
. (4)

Parameter set B = {b1, b2, · · · } of the decoder network is up-
dated with the Adam optimizer after gradient backpropagation.

According to [39], the optimization of discriminator de-
termines the accuracy of signal generation in training GAN.
Therefore, the discriminator is updated ndisc times, while the
covert signal generator and decoder are updated once for each
batch. The covert scheme is trained for multiple batches and
epochs until the parameters converge.

IV. NUMERICAL RESULTS

k message bits are encoded to a block of size n, denoted as
(n, k). We adopt a training set

{
m(i)

}10240

i=1
of one-hot code of

size 10240 with 10 batches to train the proposed scheme with
a learning rate of 2×10−4, and a validation set of one-hot code
with size 10240 to calculate Bob’s BLER and JS divergence at
each epoch. In our proposed covert scheme, the transmission
of covert signals and AN is intermittently switched, which
effectively embeds the covert signal within noise. Note that
excessively large covert signal block length can increase
the difference in the distributions of the covert signal and
noise, since it has been demonstrated that Kullback-Leibler
(KL) divergence of sequence distributions grows linearly with
the sequence length [40]. Therefore, the covert signals with
short-to-medium block length are considered, and BLER is
introduced as the performance metric in finite block length
regime, which has been adopted in [41] and [42] to measure
the communication reliability between Alice and Bob in AE.

As shown in Fig. 2, the information bits are structured in
blocks of message, and the direct input and output of the
autoencoder network are message blocks. BLER is defined as
the average probability that the decoded message m′ at Bob is
not identical to the original message m transmitted by Alice.
Consequently, BLER serves as a direct and interpretable metric
for network optimization in terms of the overall accuracy of
the transmission, which is consistent with how the AE works.
JS divergence is adopted to measure the difference between
the distributions of covert signal and AN, since minimizing the
JS divergence has been proven to be the optimization objective
for the generator in GAN [39].

Assume that Alice and Bob locate at (0, 0, -2) m and (0,
0, 1) m, respectively. The position of imaginary Willie is set
to be the same as that of Bob to ensure the signal covertness
at Bob after training. Assume that underwater absorption and
scattering coefficients are 0.04 /m and 0.06 /m, respectively.
Assume that wave slope follows truncated logistic distribution
with parameters uw = 0 and σw = 5 [4]. Assume that a
collimated LED with ηL = 1 is adopted and the receiving
aperture of APDs is 1 mm. The distribution of W2A channel
gain can be calculated from the theoretical model in [4]
following lognormal distribution with parameters u = −13.15
and σ = 0.33. The APD parameters are set to typical values
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in [30], i.e., S = 1.1538 A, M0 = 100, ηA = 1, Isd = 10−9

A. The transmitted signal power in electrical-domain is 1
W, the amplification factor of the circuit MA = 1250, and
the ambient light intensity b = 0 W. In this case, the noise
variance is mainly dominated by thermal noise due to the low
incident light power, and different noise variances are adopted
to represent different channel conditions in the subsequent
parts.

To determine the values of λw and λb, we compare the
covertness performance and demodulation performance under
different weights after training 2000 epoches with (n, k) =
(8, 4), as shown in Fig. 4. In Fig. 4(a), the BLER increases
with λw, while the JS divergence decreases with λw. It
indicates that a larger λw leads to poorer demodulation perfor-
mance and better covertness performance. Similarly, it is seen
from Fig. 4(b) that a larger λb leads to better demodulation
performance and poorer covertness performance. Therefore,
we set λw = 3 and λb = 0.6 to balance the demodulation and
covertness performance.
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Fig. 4. BLER and JS divergence on the validation set versus (a) λw (λb =
0.6) and (b) λb (λw = 3).

A. Validation Set

We set (n, k) = (8, 4) and receiver noise power of -15 dB
(relative to the signal power of 1).
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Fig. 5. (a) BLER and (b) JS divergence on the validation set versus epoch
under W2A channel.

In Fig. 5(a), Bob’s BLER decreases from 0.9360 to 0.0980
as the epoch increases from 0 to 4000. The JS divergence
between the covert signals and AN decreases from 1.058 ×
10−3 to 3.800 × 10−4, as shown in Fig. 5(b). It indicates
that Bob’s demodulation performance and signal’s covertness
performance are gradually enhanced with the training process.

Figure 6 shows the scatter diagrams on the first two ele-
ments y [0] and y [1] in received vector y at epoch 0 and 4000.
It is seen that the scatter distributions of covert signals and AN
are obviously different before training, as shown in Fig. 6(a).
After training as shown in Fig. 6(b), the covert signals are
sufficiently divergent and close to the AN.

In Fig. 7, the t-SNE (t-distributed Stochastic Neighbor
Embedding) is adopted to visualize high-dimensional signals
into a two-dimensional space. It is seen from Fig. 7(a) that the
covert signals and AN are separated from each other at epoch
0. At epoch 4000, the distributions of covert signals and AN
are sufficiently close and coincident, as shown in Fig. 7(b).

To verify the scheme effectiveness in training the signal
covertness, we only train the Alice and Bob’s AE network
without discriminator network. It is seen from Fig. 8(a) that
Bob’s BLER decreases to 0.0140 as the epoch increases to
4000, which is lower than that in the proposed scheme with
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Fig. 6. Scatter diagrams on {y [0] , y [1]} for received covert signals and AN at (a) epoch 0 and (b) epoch 4000 under W2A channel.
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Fig. 7. 2-dimensional T-SNE diagrams for received covert signals and AN at (a) epoch 0 and (b) epoch 4000 under W2A channel.
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Fig. 8. (a) BLER and (b) JS divergence on the validation set versus epoch under W2A channel without discriminator.
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Fig. 9. (a) Scatter diagrams on {y [0] , y [1]} and (b) 2-dimensional T-SNE diagrams for received covert signals and AN at epoch 4000 under W2A channel
without discriminator.

discriminator network. In Fig. 8(b), the JS divergence increases
to 4.845 × 10−3, which is 12.75 times that in the proposed
scheme with discriminator network. Since the network without
discriminator only tends to improve Bob’s demodulation per-
formance, leading to poor covertness performance of signal.

At epoch 4000, it is seen from Fig. 9(a) that the covert
signals on y [0] and y [1] axes exhibit irregular divergence,
which is different from the distribution of AN. The t-SNE di-
agram in Fig. 9(b) shows that the covert signals are composed
of 16 separate clusters. Compared with the proposed scheme
with discriminator network, the demodulation performance im-
proves while covertness performance deteriorates significantly
in AE network without discriminator network. It indicates that
there exists a trade-off between the covertness performance
and demodulation performance.

B. Test Set

A test set of one-hot code with size 307200 is adopted with
(n, k) = (8, 4). We train the proposed scheme under receiver
noise powers of -10 dB, -15 dB, -20 dB, and random values
in [-10, -20] dB, respectively. Figs. 10(a) and 10(b) show the
BLER and JS divergence on the test set versus receiver noise
power under different receiver noise powers during training
process. It is seen that the scheme trained under lager receiver
noise power yields lower BLER and larger JS divergence
on the test set, since the covertness performance of received
signals is relatively high due to the large receiver noise,
and the training process tends to improve the demodulation
performance. The model trained under random receiver noise
power in [-10, -20] dB shows a similar BLER as that trained
under -15 dB, and the JS divergence is higher than that trained
under -15 dB.

Then, we train the scheme of different block lengths (code
rate is fixed at 0.5) under receiver noise power of -15 dB. Figs.
11(a) and 11(b) show the BLER and JS divergence on the test
set versus receiver noise power under different block lengths.

The number of total transmitted information bits is fixed
at 1228800, corresponding to test sets of size 307200 with
(n, k) = (8, 4), 245760 with (n, k) = (10, 5), 204800 with
(n, k) = (12, 6), respectively. The BLERs under block length
from 8 to 12 are close to each other due to the same code rate.
The JS divergence shows larger difference for receiver noise
power lower than -15 dB, since the schemes after training
show great difference in covertness performance under low
noise power. In our scheme, the covert signal generator is
pitted against the discriminator. Thus, the JS divergence and
block lengths are not be linearly related.

Moreover, we train the scheme of different code rates (block
length is fixed at 8) under receiver noise power of -15 dB. Figs.
12(a) and 12(b) show the BLER and JS divergence on the test
set versus receiver noise power under different codes rates,
where the length of transmitted information bits is fixed at
1228800. It is seen that larger code rate leads to higher BLER
at receiver noise power higher than -12 dB. Larger code rate
also yields larger JS divergence under different receiver noise
powers, since an information block with more information bits
is more different from a noise block.

Finally, we investigate the covertness performance of the
trained scheme when actual Willie is located in different po-
sitions. For ease of illustration in the figure, we fix Willie’s y-
coordinate at 0 m and vary the x-coordinate and z-coordinate.
In the location variation, the x-coordinate cannot be 0 since
Willie cannot block Bob’s light path to avoid exposing his
eavesdropping behavior, as shown in Fig. 13. The model is
trained under receiver noise power of -15 dB and imaginary
Willie’s position (0, 0, 1) m same as Bob’s. A test set of one-
hot code with size 307200 is adopted with (n, k) = (8, 4).
It is seen from Fig. 13 that the signal covertness holds even
when the actual Willie is closer to Alice than Bob at (0.2, 0,
0.2) m. In the practical application of the covert scheme, due
to the unknown position of Willie, a covert region can be set
up to ensure that Willie cannot effectively detect within this
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Fig. 10. (a) BLER and (b) JS divergence on the test set versus receiver noise power under different receiver noise powers during training process.
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Fig. 11. (a) BLER and (b) JS divergence on the test set versus receiver noise power under different block lengths.
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Fig. 12. (a) BLER and (b) JS divergence on the test set versus receiver noise power under different codes rates.

This article has been accepted for publication in IEEE Transactions on Cognitive Communications and Networking. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2024.3524625

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on February 12,2025 at 08:26:49 UTC from IEEE Xplore.  Restrictions apply. 



11

0 0.2 0.5 1 1.5

x (m)

2

1.5

1

0.5

0.2

z 
(m

)

1.1237e-04

1.5617e-04

9.1338e-05

5.9746e-05

6.2273e-05

5.1603e-05

1.9573e-05

3.2352e-06

7.0265e-06

3.1857e-06

2.5507e-06

2.9667e-06

2.8058e-06

2.6893e-06

2.6671e-06

2.8851e-06

2.8016e-06

2.8003e-06

2.6202e-04 2.0770e-04

2.2058e-04
0.5

1

1.5

2

2.5

10-4

N/A

N/A

N/A

N/A

N/A

Bob
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area.

C. Comparision With LBC

We further compare the proposed scheme with LBC in
demodulation performance and covertness performance. We
traverse all generator matrices of (n, k) = (8, 4) LBCs,
and calculate Bob’s BLER and JS divergence of each coded
sequence under W2A channel with receiver noise power of -
15 dB. The hard decision at Bob is performed with syndrome
decoding. The soft decision with accurate channel information
is the maximum-likelihood decoding with perfect channel
fading coefficients and APD parameters, which is an upper
bound on the demodulation performance. Since the transmitted
signals of the proposed scheme do not contain the pilot signals,
a blind channel estimation algorithm based on Lloyd-Max
algorithm in [43] is adopted for performance comparison. The
soft decision with blind channel estimation corresponds to the
maximum-likelihood decoding after performing blind channel
estimation.

Table II shows the minimum BLER after hard decision or
soft decision, as well as the minimum JS divergence among
different (8,4) LBCs. The minimum BLER after hard deci-
sion, denoted as BLERhard, is 0.1370, and the corresponding
generator matrix is

G1 =


1 0 0 0 1 0 1 1

0 1 0 0 1 0 0 1

0 0 1 0 1 1 0 0

0 0 0 1 1 1 1 1

 . (5)

For data generated by G1, the BLER after soft decision with
accurate channel information, denoted as BLERsoft&accurate,
is 0.0180, the BLER after soft decision with blind channel
estimation, denoted as BLERsoft&blind, is 0.0912, and the JS
divergence is 1.490× 10−2.

The minimum BLERsoft&accurate is 0.0128, and the corre-
sponding generator matrix is

G2 =


1 0 0 0 1 0 1 1

0 1 0 0 1 1 1 0

0 0 1 0 0 1 1 1

0 0 0 1 1 1 0 1

 . (6)

For data generated by G2, BLERhard is 0.1630,
BLERsoft&blind is 0.1340, and the JS divergence is
2.031× 10−2.

The minimum JS divergence is 3.403 × 10−3, and the
corresponding generator matrix is

G3 =


1 0 0 0 0 0 1 0

0 1 0 0 1 1 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0

 . (7)

For data generated by G3, BLERhard is 0.4070,
BLERsoft&accurate is 0.0828, and BLERsoft&blind is
0.2950.

It is seen that the minimum BLERhard and the minimum
JS divergence among all LBCs are larger than those (BLER:
0.0979, JS divergence: 2.761 × 10−4) on the test set in the
proposed scheme, while BLERsoft&accurate is lower since the
prior information including channel fading and APD parame-
ters are known to Bob. The minimum BLERsoft&blind among
G1, G2, and G3 is close to that in the proposed scheme.
The t-SNE diagrams in Fig. 14 show that the distributions
of received signals coded by G1, G2, and G3 are obviously
different from those of AN, which indicates that LBCs can
not achieve good signal covertness.

Further investigation shows that the bit error rate (BER) of
the proposed scheme is 2.61 × 10−2, comparable to that of
the optimum linear block code without pilot signals 4.46 ×
10−2. Such BER can be corrected by a length-10000 LDPC
code of rate 0.5. To further reduce the BLER of the proposed
scheme under low signal-to-noise ratio (SNR) conditions, we
can increase the transmission signal power or lower the code
rate.

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed covert scheme,
a W2A-OWC system under weak ambient radiation is estab-
lished as shown in Fig. 15. The ambient light power measured
by an optical power meter (Thorlabs, PM100D with sensor
S130C) at central wavelength 520 nm is 0.112 W/m2. An
infrared LED (RUIBAO 3535, 785∼790 nm) is placed under
depth 0.30 m as the transmitter with coordinate (0, 0, -
0.30) m. An APD (Hamamatsu, S2385) is placed directly
above the transmitter at (0, 0, 0.85) m as the receiver. A
wave generator (Yujang CX-W3) is placed in a water tank
to generate wave. The wave intensity can be adjusted by
switching the power mode of the wave generator, where the
wave intensity increases with the wave type index from 1 to 5.
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TABLE II
BLER AND JS DIVERGENCE AMONG DIFFERENT (8, 4) LBCS.

Performance

Scheme
G1 G2 G3 Proposed scheme

BLERhard 0.1370 0.1630 0.4070
0.0979

BLERsoft&accurate 0.0180 0.0128 0.0828

BLERsoft&blind 0.0912 0.1340 0.2950

JS divergence 1.490× 10−2 2.031× 10−2 3.403× 10−3 2.761× 10−4
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Fig. 14. T-SNE diagrams with generator matrices (a) G1, (b) G2 and (c) G3 .

The transmitted signal from an arbitrary waveform generator
(AWG, keysight 33600A) and the direct current (DC) bias
(DC= 2.2 V) from a DC power supply (Rigol DP832A)
are used to drive the LED with a Bias-Tee. After passing
through the W2A channel, the received signal is sampled by
a digital storage oscilloscope (DSO, Agilent MSO-X 6004A)
with sampling rate 20 MSa/s for offline signal processing.

APD

LED

Wave maker

Bias-Tee

AWG

LED

APD

DSO

Wave maker

Fig. 15. The experimental system of W2A-OWC under weak ambient
radiation.

Firstly, the channel parameters are measured to train the
proposed covert scheme. A sinusoidal wave (Vpp = 3 V) of
frequency 500 kHz is transmitted to obtain the channel gain.
The channel can be modeled as a flat block fading, since the
temporal dispersion caused by scattering can be neglected if
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Fig. 16. The PDF of the channel gain under the wave of index 3.

the transmission rate is lower than Gbps [3], [32]. We extract
the gain from the amplitudes of received signals and trans-
mitted signals, and further obtain the statistical distribution
of channel gain under the wave of index 3 produced by the
wave generator, as shown in Fig. 16. It is seen that the data
can be well fitted by a logistic distribution with parameters
µ = 1.07 × 10−2 and σ = 4.86 × 10−4 by adopting the
Distribution Fitter in Matlab, i.e.,

f (x) =
exp

(
x−u
σ

)
σ
[
1 + exp

(
x−u
σ

)]2 , (8)

In addition, the receiver noise variance is calculated to be
σ2
n = 3.20× 10−7 without signal transmission. These channel

parameters are adopted to train the covert scheme with a
training set of size 10240 and a validation set of size 10240.
We set (n, k) = (8, 4). Figure 17 shows that Bob’s BLER on
validation set decreases from 0.9330 to 0.0160 as the epoch
increases from 0 to 4000, while the JS divergence between
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Fig. 17. (a) BLER and (b) JS divergence on the validation set versus epoch under experimental channel.
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Fig. 18. 2-dimensional T-SNE diagrams for received covert signals and AN of (a) proposed scheme and (b) LBC sequences coded by GJSmin.
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Fig. 19. The BLER and JS divergence (a) under different wave types and (b) different position offsets.
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the covert signals and AN decreases from 2.189 × 10−3 to
3.733× 10−4.

After training the proposed scheme, we generate a test set
of size 10240 and send it into the covert signal generator to
obtain the transmitted signals. In addition, AN is generated
by the Gaussian noise generator. After pulse shaping by a
root-raised-cosine filter (RRC) with roll-off factor 0.25 and
upsampling factor 10, the transmitted signals are loaded into
the AWG with Vpp = 3 V and frequency 5 MHz. At the
receiver, the electrical signals sampled by DSO are filtered by
an RRC and further sent to the covert signal decoder. Under
the same wave of index 3 as the training process, Bob’s BLER
on the test set is 0.0540 and JS divergence is 5.005 × 10−4.
The demodulation and covertness performance on the test set
degrades slightly compared with the results in the training
process, due to the difference of the water surface fluctuation
and the measurement imperfection of channel parameters.

For comparison, we traverse all generator matrices of
(n, k) = (8, 4) LBCs on the channel model measured in the
experiment, and demodulate the codes by hard decision or soft
decision with blind channel estimation. The sequences coded
by generator matrices GBLERmin and GJSmin corresponding
to the minimum BLER and minimum JS divergence are
adopted for transmission on the experimental link, respec-
tively. The transmission process and parameters are the same
as those of the proposed scheme above. Under the same wave
of index 3, Bob’s BLER for sequence coded by GBLERmin is
0.0223 after soft decision with blind channel estimation, and
the JS divergence between the sequence coded by GJSmin and
AN is 3.620×10−2. The results indicate that the demodulation
performance of LBC is in the same order as that of the
proposed scheme, while the covertness performance of LBC
is much worse than that of the proposed scheme.

Figure 18(a) shows the distribution of received signals
generated by proposed scheme is sufficiently close to that of
AN in the t-SNE diagram, while the LBC sequences coded by
GJSmin show 16 separate clusters in Fig. 18(b).

To investigate the scheme robustness to the wave intensity
and position offset, we calculate the BLER and JS diver-
gence under different wave types (index from 1 to 5) and
position offsets, as shown in Fig. 19. The wave intensity
increases with the wave type index. It is seen from Fig. 19(a)
that among all wave types, the BLER of proposed scheme
and LBC sequences coded by GBLERmin are around 0.0500
and 0.0200, respectively. Due to imperfect channel modeling
during training process, the demodulation performance of
proposed scheme is slightly worse than that of LBC. However,
the JS divergence of LBC sequences coded by GJSmin is about
70 times that of the proposed scheme.

In Fig. 19(b), as the horizontal offset of the receiver in-
creases from 0 cm to 40 cm, the BLER of proposed scheme
increases from 0.0540 to 0.2149, and the BLER of LBC
sequences coded by GBLERmin increases from 0.0223 to
0.1776, since lager position offset leads to weaker signal power
and further larger BLER. The JS divergence of LBC sequences
coded by GJSmin decreases from 3.620×10−2 to 6.300×10−3,
since the proportion of noise in the received signal increases
with the horizontal offset, thus reducing the JS divergence.

The JS divergence of proposed scheme changes slightly around
1.000× 10−3.

In the experiment, the BLER of the proposed scheme is
slightly higher than that of LBCs, while the JS divergence
of the proposed scheme is significantly lower than that of
LBCs. The primary goal in covert communication is to achieve
signal covertness, so slightly sacrificing the demodulation
performance is worthwhile.

VI. CONCLUSION

In this work, we have proposed a covert scheme for W2A-
OWC systems based on an AAE to generate covert signals
without manual feature extraction for information hiding. The
neural network structure and related optimization have been
explored to achieve signal distribution close to AN distri-
bution. The visualization results in two-dimensional space
through t-SNE show similar distributions of covert signals
and AN after training under W2A channels. Furthermore, the
proposed scheme has been tested under different receiver noise
intensities, block lengths, code rates, and Willie’s positions.
The comparison results with LBC indicate that the proposed
scheme shows lower BLER and JS divergence compared
with those of LBCs under hard decision, as well as similar
BLER and lower JS divergence compared with those of LBCs
under soft decoding with blind channel estimation. In the
experiments, the proposed AAE-based scheme shows slightly
higher BLER but significantly lower JS divergence, compared
with LBCs under soft decoding with blind channel estimation.
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