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Abstract— Sampling frequency offset (SFO), which is due to 
mismatch of sampling clocks between transmitter and receiver 
oscillators, is a key factor affecting transmission performance of 
orthogonal frequency division multiplexing (OFDM) signal in 
visible light communication (VLC) systems with bandwidth-
limited light emitting diodes (LEDs). To improve the system 
spectral efficiency for a relatively high capacity, an effective 
scheme for SFO compensation is required to achieve a high 
signal to interference plus noise ratio (SINR). From the practical 
system design point of view, a fourth-order piecewise polynomial 
interpolator using Farrow structure is proposed to digitally 
compensate SFO for VLC systems. Nonlinearity of LEDs causes 
extra high frequency components beyond the OFDM signal 
spectrum, which may aggravate the aliasing effect when digital 
compensation of SFO is applied. Theoretical study is thus given 
to the impact of both the LED nonlinearity and SFO-induced 
inter-carrier interference (ICI) on SINR of the received OFDM 
signal. Both numerical and experimental results show that the 
proposed scheme can be applied to effectively compensate a local 
oscillator frequency offset up to ±1000ppm in an OFDM-based 
VLC system at a minimum oversampling rate of 1.3 at the 
receiver.  

Keywords— Visible light communication (VLC); orthogonal 
frequency division multiplexing (OFDM); sampling frequency 
offset (SFO); synchronization 

I. INTRODUCTION 
To address the challenge of limited bandwidth in the 

current wireless communication systems, visible light 
communication (VLC) has been considered as a promising 
technology for future high-speed and/or green communication 
systems due to the rich license-free spectrum (380-780nm) of 
widely deployed light emitting diodes (LEDs) as energy-
efficient light source for both illumination and communication 
[1-3]. In theory, VLC can offer a 1000 times greater bandwidth 
compared to the radio frequency (RF) communications. Since 
LEDs have a feature of fast-switching for amplitude 
modulation, intensity modulation/direct detection (IMDD) is 
applied in a cost-effective VLC system with commercially 
available white LEDs, which results in limited modulation 
bandwidth of several MHz without optical filtering and 
equalization. In order to improve signal spectral efficiency for 
high-speed VLC transmission [3, 4], orthogonal frequency 
division multiplexing (OFDM) has been widely investigated in 

recent years. In an OFDM-based VLC system with high 
spectral efficiency, a relatively precise synchronization is 
required since sampling frequency offset (SFO) occurs due to 
mismatch of sampling clocks between transmitter and receiver 
oscillators, which results in severe interference between 
adjacent OFDM subcarriers (inter-carrier interference, ICI) [5, 
6]. In practice, the inherent instability of transmitter and 
receiver oscillators causes clock frequency to fluctuate with 
time and temperature. Many standards for wireless 
communication systems specify an acceptable packet error rate 
for clocks with a tolerance of ±20~25ppm [7]. In addition, 
there are nonlinear regions in the P-U curve of LEDs due to 
saturation of output optical power. Such nonlinearity causes 
extra new frequency components inside/outside the OFDM 
signal spectrum, which may affect the synchronization 
performance.  

There are several different methods for the sampling 
frequency synchronization, which can be categorized in the 
following two types:  1) Synchronous mode: Sampling at the 
receiver can be synchronized to the symbol rate of the 
incoming signal with feedback/feedforward information about 
estimated SFO for adjustment of the phase of a local clock [8-
11]. Such a method has a large timing fluctuation due to high-
level phase noise [12]. The receiver clock can also be 
synchronized by sending a dedicated clock signal along with 
information signal, which can be extracted at the receiver [13, 
14]. However, this method requiring additional analog circuits 
increases not only system complexity, but also peak-to-average 
power ratio (PAPR) of OFDM signal. 2) Asynchronous mode: 
Digital processing of sampled signal is applied to mitigate SFO 
effect without altering the local clock. This can be realized by 
multiplying the signal after fast Fourier transform (FFT) (or 
before inverse FFT) with an exponential term derived from the 
estimated SFO to compensate phase error at each subcarrier at 
the receiver (or transmitter) [15-23], or interpolating the 
sampled signal to construct a resampled signal at the same 
sampling frequency as the transmitter [24]. For the former 
scheme of digital SFO compensation using the phase rotation 
correction term, SFO effect can be partially mitigated because 
the ICI between subcarriers due to the SFO still exists. For the 
latter scheme using digital interpolation, the ICI can be well 
alleviated in the digitally resampled signal so that the SFO 
effect is expected to be mitigated completely.  
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In the previously published work, there is rare study about 
digital compensation of SFO with interpolation for OFDM-
based VLC applications. In this paper, investigation is made of 
exploring an efficient scheme for digital compensation of SFO 
in the high-speed OFDM-based VLC system. To understand 
the combined nonlinear and aliasing effect during digital 
processing of SFO compensation at the receiver, the impact of 
both the LED nonlinearity and SFO-induced ICI on signal to 
interference plus noise ratio (SINR) is theoretically 
investigated in an OFDM-based VLC system. With a 
fundamental model of the nonlinear LED-based VLC channel, 
a fourth-order piecewise polynomial interpolator using Farrow 
structure is proposed to digitally compensate SFO estimated 
with scattered pilots. In addition, it is desirable to use an 
analog-digital converter (ADC) operating at a low sampling 
frequency at the receiver for low complexity. Special attention 
is given to numerical and experimental exploration of the 
minimum oversampling rate of the ADC required for achieving 
the improved transmission with the proposed scheme.  

II. DIGITAL COMPENSATION OF SFO WITH POLYNOMIAL 
INTERPOLATOR USING FARROW STRUCTURE 

Figure 1 shows a block diagram of a typical OFDM-based 
VLC system with an LED. At the transmitter, real-valued 
OFDM signal generated with input data of IFFT satisfying 
Hermitian symmetry is sent to a digital-analog converter 
(DAC) at a sampling frequency of ft. The analog OFDM signal 
is then used to directly drive the LED for VLC transmission. 
At the receiver, optical intensity of the received OFDM signal 
is detected with a photodiode (PD). The electrical OFDM 
signal is digitized with an ADC at a sampling frequency of fs 
before signal recovery in digital signal processing including 
synchronization, FFT and equalization. Given the instability of 
transmitter/receiver oscillators, the frequency of receiver clock 
is defined as 1 (1 )s tsf T f    , where λ is oversampling 
rate and  is SFO. The SFO is estimated and digitally 
compensated as shown in Fig. 2. In this section, theoretical 
investigation is given to the proposed digital compensation of 
SFO with a polynomial interpolator using Farrow structure. 
The SINR due to the SFO-induced ICI and LED nonlinearity is 
also analytically studied.  

A. Sampling frequency offset (SFO)  
For simplicity of analysis of the SFO effect, a linear 

channel is initially assumed. The demodulated OFDM signal at 
the thk subcarrier of the thl OFDM symbol after FFT in Fig. 1 
is written as [5]: 
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where N and Ng are size of inverse FFT (IFFT) and cyclic 
prefix, respectively. The symbol length Ns is thereby equal to 
(N+Ng). lZ and lH are transmitted OFDM signal and frequency 

response of the VLC channel, respectively. ln  is complex 
noise. As seen from (1), the SFO causes amplitude attenuation, 
phase rotation and ICI. Before the digital SFO compensation, 
the SFO is estimated with scattered pilots after FFT in the 
frequency domain [23]. The phase rotation of the thk pilot 
subcarrier in the thl OFDM symbol is given 
by , , ,( 1) / 2 ( ) /l k k k k k s gN N lN N N      . With the 
phase difference of pilots between two OFDM symbols 
delayed by D symbols (pilot period), 

, , , 2 /l k l k l D k sN D k N       , the estimated SFO, ̂ , is 
obtained with (L-D) symbols 
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where ki is pilot index. In Fig. 2, a feedback loop is applied to 
track SFO at a resampling frequency given below 

ˆ1 ' (1 )i i if T f                                 (5) 

where 'if  is the calculated resampling frequency in the 
previous loop and its initial value is sf  .  

B. Digital compensation of SFO 
With the estimated SFO, a piecewise polynomial 

interpolator with Farrow structure is used to construct 
resampled signal for SFO compensation. The advantage of the 
polynomial interpolator is that the interpolation signal can be 
calculated without storing samples for calculation of impulse 
response. The resampled signal y(nTi) is written as [24, 25] 

              ( ) ( ) ( )i s I i s
m

y nT x mT h nT mT                 (6) 

where hI is impulse response of the digital interpolator. With 
the polynomial interpolation using Farrow structure for high-
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Fig. 1. A typical OFDM-based VLC system with an LED. 
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Fig. 2.  Digitial compensation of SFO with polynomial interpolator. 
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speed systems, (6) can be derived in the following form [24, 
25],  
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where ( )qc i is coefficient of the interpolation filter. Here, a 
fourth-order piecewise polynomial interpolator (Q=4) using 
Farrow structure is proposed to improve the VLC transmission 
performance by suppressing the spectral artifacts more than 
60dB below the designed passband [26]. To verify the 
improved transmission performance, the piecewise-parabolic 
(Q=2) and cubic (Q=3) interpolation filters are also 
investigated. Figure 3(a) shows spectrum difference between 
the 2nd (piecewise-parabolic), 3rd (cubic) and 4th order 
interpolation filters. The amplitude of the spectrum for the 4th 
order case is less attenuated than the 2nd and 3rd order cases 
when 0.5sfT  , but attenuates faster when 0.5sfT  .  

The controller is designed to calculate integer index mk and 
fractional interval μk for the input of interpolator with the 
calculated Ti from the iterative calculator 

         1 int /k k k i sm m T T                             (10) 

     1 ( / ) int[ / ]k k i s k i sT T T T                       (11) 

where int[μ] means the largest integer not exceeding μ. 

C. SINR due to SFO-induced ICI and LED nonlinearity  
To focus on theoretical investigation of performance of 

SFO compensation, the DAC is assumed to be ideal. At the 
transmitter, the LED is driven by an electrical OFDM 
signal ( )z t , which can be expressed as 
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where bV is bias voltage, u is an electrical gain factor, f is 
subcarrier spacing. Cyclic prefix is ignored to simplify the 
analysis here.  

To model the LED nonlinearity, a second-order polynomial 
form is used to mimic the measured P-U curve of the LED as 
shown in Fig. 3(b), whilst Fig. 3(c) shows frequency response 
of the LED. The optical power of the signal from the LED is 
given by [27] 

2
2 1 0( ) ( ) ( )p t b z t b z t b    .                     (13) 

where bi is coefficient of the polynomial function. In the 
frequency domain, (13) can be written as 
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At the receiver, the spectrum of the continuous signal 
( )x t in Fig. 4(a) can be written as 

( ) ( ) ( ) ( )cX j P j H j n j                         (18) 

where Ω=2πf. Hc is frequency response of the VLC link 
including the LED, PD, electrical amplifier and LPF. P(jΩ) is 
spectrum of the optical signal after the LED, which can be 
easily derived from (13). n(jΩ) is sum of shot noise and 
thermal noise at the receiver. For simplicity, n(jΩ) is modeled 
as additive white Gaussian noise (AWGN) with a variance of 
σn

2 [28]. The LPF is used to partially suppress interferences 
outside the signal spectrum. The spectrum of x(m) after ADC 
in Fig. 4(b) is expressed as  
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Fig. 3.  (a) Spectra of interpolation filters using Farrow structure and the 
aliasing effect, (b) P-U curves, Markers/Solid curve: measured/fitted curve, 
(c) Frequency response of the LED.  
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Fig. 5.  MSE of SFO as a function of (a) D (L = 40) or (b) L (D = 4) in 
AWGN, SFO=1000ppm. 
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Fig. 6.  EVM  and SINR performance in an LED-based VLC channel at an 
oversampling rate of (a) λ =1, (b) λ =1.5. SFO=100ppm. 
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Fig. 7.  (a) SINR as a function of oversampling rate. (b) EVM versus SFO 
with the 2nd, 3rd and 4th order interpolators in an LED-based VLC link.  
 
 

where r is an integer number, and ω=Ω/fs. The oversampling 
rate   of 1~2 at the receiver ADC (fs[ft , 2ft]) is considered 
here. As the first sidelobe of the signal spectrum X(jΩ) 
contains most power of out-of-band signal, the spectrum of the 
continuous-time signal reconstructed with interpolation in Figs. 
4(c) is calculated as follows 

1
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where HI(jΩ) is spectrum of the interpolation filter. In Fig. 
4(d), the spectrum of the resampled signal y(n) can be derived 
as  
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If SFO is accurately estimated, i tf f is satisfied. The signal 
after FFT can be written as 
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where (1 )    . Therefore, the SINR at the thk subcarrier is 
obtained as  
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As shown in (22)-(26), SINR depends on SFO, oversampling 
rate at the receiver, and frequency responses of the polynomial 
interpolator and VLC channel and LED nonlinearity, which 
are discussed in Section III. 

III. RESULTS AND DISCUSSION 

A. Numerical verification of the digital SFO compensation 
Based on the theoretical study of the SFO in the OFDM-

based VLC system in Section II, 16-QAM-OFDM transmission 
performance over the VLC links with an LED is numerically 
investigated for verification of the proposed digital 
compensation of SFO with the polynomial interpolator using 
Farrow structure. The sizes of IFFT and CP are 128, 16, 
respectively. Pilots at the 12th, 23rd, 34th, and 45th subcarriers 
are used to estimate SFO. The sampling frequency of DAC is 
fixed at 25MHz, whilst the bandwidth of OFDM signal is 
12.5MHz.  

Before investigation of the OFDM transmission 
performance, key parameters of D (pilot period) and L (number 
of symbols for SFO estimation) from (4) are optimized under 
AWGN in Fig. 5, where SFO=1000ppm. Mean square error 
(MSE) of the estimated SFO is used to quantify the estimation 
performance. As seen in Fig. 5, the increment of MSE with 
increasing L or D for SNR=7 or 20dB when L≥40 or D≥4 is 
observed because the estimated phase difference between two 
pilot symbols must be in the range [-], and the shift of FFT 
window due to the SFO must be in the cyclic prefix range. For 
L (D) less than the optimum value of 40 (4), the MSE 
performance degrades with decreasing L (D) because of the 
noise effect.    

With the optimized parameters, L=40 and D=4, error vector 
magnitude (EVM) and SINR performance over a VLC link 
with the LED in Figs. 3(b, c) are used to validate the 
performance of SFO compensation with the 2nd, 3rd and 4th 
order polynomial interpolators using Farrow structure in Fig. 6, 
where SFO=100ppm, SNR=28dB. The EVM performance is 
consistent with the SINR derived from (26). As seen in the 
figures, the 4th order polynomial interpolator outperforms the 
2nd and 3rd order polynomial interpolators at an oversampling 
rate of 1 or 1.5. Figure 6(a) shows a significantly degraded 
EVM in the high frequency subcarriers for both cases because 
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interpolator. The experimental results, which agree very well 
with the numerical results, confirm again that the proposed 
scheme for the digital SFO compensation using the 4th order 
interpolator can be used to effectively compensate a local 
oscillator frequency offset up to ±1000ppm in an OFDM-based 
VLC system with a minimum oversampling rate of 1.3 at the 
receiver.  

IV. CONCLUSIONS 
With analytical study of the combined nonlinear and 

aliasing effect during the digital process of SFO compensation 
in an OFDM-based VLC system with practical LEDs, a fourth-
order piecewise polynomial interpolator using Farrow structure 
has been proposed to digitally compensate SFO between 
transmitter and receiver oscillators. Theoretical investigation 
has been conducted on the impact of both the LED nonlinearity 
and SFO-induced ICI on SINR of the received OFDM signal. 
With the optimized parameters for SFO estimation, numerical 
and experiment results have shown that the proposed 
interpolator for the digital SFO compensation can be used to 
effectively compensate a local oscillator frequency offset up to 
±1000ppm at a minimum oversampling rate of 1.3 in an 
OFDM-based VLC system.  
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