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Abstract—In this work, we develop a theoretical transmission
model for optical wireless communication systems with receiver
nonlinearity. To provide a framework for analyzing transmission
rates, we derive lower and upper bounds on channel capacity
under average and peak optical power constraints in both single-
input single-output and multiple-input multiple-output systems
using entropy power inequalities and dual expression. Numerical
results verify the tightness of our derived capacity bounds and
highlight the significant relationship between channel capacity
and receiver nonlinearity.

Index Terms—Channel capacity, receiver nonlinearity, optical
wireless communication.

I. INTRODUCTION

The development of wireless communication focuses on
higher efficiency and reliability, thereby enabling seamless
connectivity and enhanced user experiences [1]. Optical wire-
less communications (OWC) is a unique alternative to tra-
ditional radio frequency (RF) communications. It offers ex-
panded spectrum resources, heightened security, and addi-
tional capabilities such as indoor positioning and naviga-
tion. Notably, OWC is recognized for its eco-friendliness
and energy efficiency [2], [3], positioning it as an emerging
pivotal technology in the communication landscape. Shannon
Theorem lays down a theoretical framework for determining
the maximum achievable data rate of a linear channel with a
specified bandwidth and noise power spectral density without
transmission errors [4]. However, despite the theoretical results
available for RF communications, the extension to OWC needs
further endeavor. The discrepancy stems from the unique
attributes of OWC, including its dual role in communication
and illumination, specific modulation and detection needs, and
a different occupied spectral domain and modulation scheme
from RF communication. Moreover, in wireless RF commu-
nication systems, the power amplifiers at the RF transmitter
introduce nonlinear distortion, especially when operating near
the maximum power, leading to saturation. However, in OWC,
the nonlinearities are most significant at the receiver side,
where photodetectors (such as photodiodes or avalanche pho-
todiodes (APDs)) can exhibit nonlinear behavior under high
optical power levels, leading to saturation and signal distortion
during the optical-to-electrical conversion.
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Additionally, there are specific safety standards that OWC
must adhere to, including avoiding excessive optical intensity
to prevent harm to the eyes and skin.

Given the luminous capability of light-emitting diode (LED)
and laser diode (LD), there is also a maximum allowable
optical intensity. A range of studies has delved into the
capacity of discrete [5]–[8] and continuous-time Poisson chan-
nels [9]–[11]. Furthermore, Gaussian model often allows for
simpler analysis and mathematical calculations compared to
the Poisson model. The capacity of Gaussian model with
input-dependent noise has been studied in [12]–[14]. More-
over, other studies have specifically targeted multiple-input
multiple-output (MIMO) systems [15], [16].

The nonlinearity, primarily stemming from hardware im-
perfections in optical sources, photodetectors, and auxiliary
electronic circuits, can induce extra distortion. These im-
perfections can lead to various issues including harmonic
generation, saturable absorption, self-phase modulation, in-
termodulation distortion, quantization discrepancies and clip-
ping aberrations. From the perspective of the communications
field, such nonlinearity detrimentally impact the bit error
rate (BER), degrading not only the primary system but also
neighboring systems within the spectral range. To evaluate the
impact of nonlinearity on the performance of a communication
system, it is essential to conduct comprehensive modeling
and analysis. This includes mathematical representations of
the nonlinearities, simulations, and empirical tests. Numerous
studies aim to investigate the performance issues associated
with nonlinearity, addressing challenges such as out-of-band
radiation and envelope limiting [17]–[19]. These works also
emphasize the importance of preventing signals from operating
in a device nonlinear region by avoiding significant pow-
er fluctuations. For MIMO systems, work [20] investigated
nonlinear amplitude distortion, deriving an accurate upper
bound on the BER for zero-forcing receivers with quadrature
amplitude modulation amid channel estimation error. The
lower and upper bounds for fading MIMO channel based
on a general transmission model have been studied in [21].
In multicarrier systems, the varied amplitudes and phases of
individual subcarriers result in larger nonlinear distortions.
Such variations can lead to phenomena like intermodulation
products, spectral regrowth and other nonlinear effects. Several
studies have delved into the potential of multicarrier systems
affected by transmitter clipping [22] and the capacity of
orthogonal frequency division multiplexing (OFDM) channels
under high peak-to-average power ratios [23], [24]. To combat
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the distortions induced by nonlinearity, technologies such as
pre-distortion, digital signal processing, and adaptive power
control have been developed [25], [26].

Despite existing research, one area that remains relatively
unexplored is the receiver nonlinearity in OWC systems,
especially under high levels of background radiation or signal
strength. In addition, the lack of a comprehensive analytical
framework for nonlinear systems complicates the assessment
of nonlinearity impact on channel capacity.

In this work, we investigate the capacity bounds for OWC
with non-monotonic receiver nonlinearity. Taking into account
the channel state, nonlinear function and thermal noise, we
develop a theoretical transmission model for OWC with re-
ceiver nonlinearity. To provide a framework for analyzing
the transmission rate, we derive lower and upper bounds
on the channel capacity under average power constraint and
peak power constraint in single-input single-output (SISO)
and MIMO system, using entropy power inequality (EPI) and
well-designed dual expressions. We derive these bounds under
the assumption that the channel matrix is perfectly known
at the transmitter. To evaluate the capacity reduction due
to nonlinearity in a practical scenarios, we consider several
representative nonlinear models in OWC. Numerical results
demonstrate the tightness of the derived capacity bounds and
highlight the significant relationship between channel capacity
and receiver nonlinearity. These comparisons provide deeper
insights into how nonlinearity at the receiver affects the overall
system performance at high power levels.

The paper is organized as follows. The nonlinear receiver
OWC system model is described in Section II. Sections III
and IV derive the lower and upper capacity bounds for SISO
and MIMO systems, respectively. Section V provides numer-
ical results of lower and upper bounds for several nonlinear
models. Finally, Section VI concludes this work.

II. CHANNEL MODEL

The photodetector, such as photodiode, APD, and single-
photon avalanche diode, as well as analog-to-digital convert-
ers (ADCs) and low-noise amplifier (LNA), typically exhibit

nonlinearity [27], [28]. From the communication perspective,
nonlinearity effects lead to performance degradation, affect-
ing not only the system itself but also neighboring systems
operating within the same contaminated spectral range. Such
nonlinear relationship may be non-monotonic [29]–[32].

As illustrated in Fig. 1(a), we consider an OWC system
with intensity-modulation and direct-detection (IM/DD). At
the transmitter, the driving circuit drives the light source with
an electrical signal to emit an optical signal. The receiver-
side front-end photodetector converts the detected optical
signal into an electrical signal which is fed into the backend
processing circuit for data recovery.

Figure 1(b) shows the experimental setup of an OWC
system. The transmitter-side nonlinearity is caused by devices
such as high-power amplifier, LNA, or LED. Assume that the
transmitter has accurate knowledge of its own nonlinearity
characteristics. Figure 1(c) shows the nonlinear relationship
between the incident optical power and the output of the
APD. Consider a memoryless nonlinear receiver system char-
acterized by nonlinear function y = ϕ (x). Assume that the
mapping y = ϕ (x) is not necessarily one-to-one, and is a
Borel function, i.e., for any y, set {ϕ (x) 6 y} consists of
the union and intersection of a countable number of intervals.
Such assumption preserves the measurable properties of signal.
Moreover, assume that the probability of {ϕ (x) = ±∞} is
zero.

The general transmission model for a nonlinear receiver is
given by

R (t) = ϕ (H (t)X (t)) + n (t) , (1)

where X (t) and R (t) are the transmitted signal and received
signal, respectively; H (t) denotes the channel link gain; ϕ (·)
denotes the memoryless time-invariant nonlinearity function,
and n (t) denotes the zero-mean Gaussian noise with variance
σ2. Based on Gaussian assumption, we can effectively obtain
tractable forms of the upper and lower bounds to evaluate
capacity, which would otherwise be difficult or impossible to
derive analytically with more complicated noise models. Note
that the nonlinearity at the receiver is predominantly triggered
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Fig. 1. (a) A representative OWC system. (b) The experimental setup for OWC system. (c) The APD output versus incident optical power.
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by the high-power signal, while the effect of noise is relatively
small. The nonlinear function ϕ (·) is illustrated in Fig. 2. For
typical physical devices, the “flat” region generally occurs
in the saturation region when the input power is too high.
For example, when the nonlinear function is a hard clipping
function, all values of the received signal exceeding the hard
clipping threshold will be limited to the threshold.

O

( )Zf

Zm

a

Fig. 2. Nonlinearity “input-output” function in receiver.

Here, the independent variable Z is constrained to the range
[0, µ], where µ = HA. The function ϕ (Z) for Z ∈ [0, µ] is
constrained to the range [0, α].

We consider the following average and peak optical power
constraints,

EX [X] 6 E , (2)

0 6 X 6 A, (3)

where E and A denote the allowed average power limit and
allowed peak power limit, respectively. By using the “less than
or equal to” constraint in Eq. (2), we avoid that the system is
forced to operate at full power. The ratio between E and A is
defined as

ε , E
A
, 0 < ε 6 1. (4)

The capacity with average and peak optical power constraints
is denoted as C (A, E).

Under the constraints in Eqs. (3) and (2), this work analyzes
the upper and lower bounds on the channel capacity for
nonlinear receiver OWC systems.

III. CAPACITY BOUND OF THE NONLINEAR SISO SYSTEM

A. Lower Bound for SISO System

The capacity, as the maximum mutual information between
input and output signals over all input distributions, can be
expressed as

C = max
fX(x)

I (X;R) = max
fX(x)

[h (R)− h (R |X )]

= max
fX(x)

h (ϕ (HX) + n)− h (n) .
(5)

where h(X) = −
∫∞
−∞ fX(x) ln fX(x)dx, and fX (x) denotes

the probability density function (PDF) of X . From Eq. (5), a

lower bound can be derived as

C = max
fX(x)

h (ϕ (HX) + n)− h (n) (6a)

> 1

2
ln
[
e2h(ϕ(HX)) + e2h(n)

]
− h (n) (6b)

=
1

2
ln

[
1 +

e2h(ϕ(HX))

2πeσ2

]
, (6c)

where the inequality in Eq. (6b) follows from EPI.

Define new random variable Y = ϕ (HX). The PDF
fY (y) of Y can be obtained as follows. Solve the equation
y = ϕ (Hx) under condition H = h11 (where subscript “11”
indicates SISO) and Y = y. Define xi as the i-th real root of
the equation y = ϕ (h11x), i.e.,

y = ϕ (h11x1) = · · · = ϕ (h11xi) = · · · , y ∈ [0, α] , (7)

x1, · · · , xi, · · · ∈ [0, A]. (8)

We divide the nonlinear function into smaller intervals of
x, where the nonlinear function within each interval of x is
monotonous, as illustrated in Fig. 2. For values of y within
each where ϕ(h11x) is one-to-one, the inverse function can be
defined as

x1 = x1 (y) , · · · , xi = xi (y) , · · · . (9)

The PDF of Y can be expressed as [33]

fY (y)

=
fX (x1)

|ϕ′ (h11x1)|

∣∣∣∣
x1=x1(y)

+ · · ·+ fX (xi)

|ϕ′ (h11xi)|

∣∣∣∣
xi=xi(y)

+ · · ·

=

ψ(y)∑
i=1

fX (xi)

|ϕ′ (h11xi)|

∣∣∣∣∣∣
xi=xi(y)

(10)

where ϕ′ (h11x) is the derivative of ϕ (h11x) with respect to
x; p (x)|x=q(y) denotes that p (x) is first evaluated and then
x is substituted with q (x). If Eq. (7) has no real roots for
given y and h11, then fY (y) = 0. Define a function ψ (y) to
represent the number of real roots xi for a given y.

Then, the differential entropy of Y , denoted as h (y), is
provided by Eq. (11).

Applying Jensen’s inequality to convex function κ (u) =
u lnu with u>0, we have

κ

(
1

n

n∑
i=1

ui

)
6 1

n

n∑
i=1

κ (ui), for all u1, u2, · · · , > 0. (12)

Setting n = ψ (y) and ui =
ψ(y)fX(xi)
|ϕ′(h11xi)|

∣∣∣
xi=xi(y)

in Eq. (12),

Eq. (11) is lower bounded by Eq. (13).

Noting that y = ϕ (h11x), the substitution is introduced to
simplify the expression, and Jacobian determinant is calculated
to eliminate the denominators in each term. Additionally, the
logarithmic terms inside ln(·) are decomposed into two parts
to facilitate the application of EPI. As a result, Eq. (11) can
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h (ϕ (h11X)) = h (Y ) = −
∫ α

0

fY (y) ln fY (y) dy

=−
∫ α

0

[
fX(x1)

|ϕ′ (h11x1)|

∣∣∣∣
x1=x1(y)

+· · ·+ fX(xi)

|ϕ′ (h11xi)|

∣∣∣∣
xi=xi(y)

+· · ·

]
ln

[
fX(x1)

|ϕ′ (h11x1)|

∣∣∣∣
x1=x1(y)

+· · ·+ fX(xi)

|ϕ′ (h11xi)|

∣∣∣∣
xi=xi(y)

+· · ·

]
dy

= −
∫ α

0

ψ(y)∑
i=1

fX (xi)

|ϕ′ (h11xi)|

∣∣∣∣∣∣
xi=xi(y)

 ln

ψ(y)∑
i=1

fX (xi)

|ϕ′ (h11xi)|

∣∣∣∣∣∣
xi=xi(y)

dy.

(11)

h (Y ) > −
∫ α

0

[
fX (x1)

|ϕ′ (h11x1)|
ln
ψ (y) fX (x1)

|ϕ′ (h11x1)|

]∣∣∣∣
x1=x1(y)

+ · · ·+
[

fX (xi)

|ϕ′ (h11xi)|
ln
ψ (y) fX (xi)

|ϕ′ (h11xi)|

]∣∣∣∣
xi=xi(y)

+ · · · dy

= −
∫ α

0

ψ(y)∑
i=1

[
fX (xi)

|ϕ′ (h11xi)|
ln
ψ (y) fX (xi)

|ϕ′ (h11xi)|

]∣∣∣∣
xi=xi(y)

dy.

(13)

be simplified to

h (Y ) > −
∫ A

0

fX (x)

[
lnψ (ϕ (h11x)) + ln

fX (x)

|ϕ′ (h11x)|

]
dx.

(14)

A tight lower bound is determined by the input distribution
that maximizes the right-hand side of Eq. (14), subject to
the average and peak optical power constraints. The related
optimization problem is formulated as

max
fX(x)

−
∫ A

0

fX (x)

[
lnψ (ϕ (h11x)) + ln

fX (x)

|ϕ′ (h11x)|

]
dx

(15)
s.t.

∫ A
0
fX (x) dx = 1, (16)∫ A

0
xfX (x) dx 6 E , (17)

fX (x) > 0. (18)

According [34, Theorem 12.1.1], the optimal form of fX (x)
is given by

fX (x) = |ϕ′ (h11x)| eλ1+λ2x−1−lnψ(ϕ(h11x)), (19)

where λ1 > 0 and λ2 > 0 are chosen to satisfy Eqs. (16) and
(17).

Substituting Eq. (19) into Eq. (14), we have

h (Y ) > −
∫ A

0

fX (x) (λ1 + λ2x− 1)dx (20)

= − (λ1 + 1− λ2EX [X]) , (21)

where EX [X] is the expectation of X . Let λ∗1 and λ∗2 denote
the values of λ1 and λ2 that maximize Eq. (21). Then, the
lower bound is given by

C (A, E) > 1

2
ln

[
1 +

e2(−λ
∗
1+1−λ∗

2EX [X])

2πeσ2

]
. (22)

B. Upper Bound for SISO System

An upper bound on the OWC channel capacity can be
written as

C 6 max
fX(x)

EX
[
D
(
PR|X (r |x ) ∥VR (r)

)]
, (23)

D
(
PR|X (r |x ) ∥VR (r)

)
=

∫
PR|X (r |x ) ln

PR|X(r |x )
VR (r)

dr,

(24)
where VR (r) is any choice of “test” density on the output
signal space. To obtain a relatively tight upper bound close to
the actual channel capacity, delicate consideration of VR (r)
is required. We select VR (r) as Eq. (25) shown in Fig. 3.

O r
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Fig. 3. Test density VR (r) for SISO OWC.

VR (r) =


ρ√
2πσ

e−
r2

2σ2 r 6 0

1−ρ
α 0 < r 6 α

ρ√
2πσ

e−
(r−α)2

2σ2 r > α

, (25)

where ρ ∈ [0, 1] is the parameter to be optimized. VR (r) is
composed of two scaled distributions: a uniform distribution
over the interval (0, α] and truncated Gaussian distributions
over the intervals (−∞, 0] and (α,∞).
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For the nonlinear receiver system described by Eq. (1),
conditional PDF PR|X (r |x ) can be expressed as

PR|X (r |x ) = 1√
2πσ

e−
[r−ϕ(h11x)]2

2σ2 . (26)

Substituting Eqs. (26) and (25) into the relative entropy
D
(
PR|X (r |x ) ∥VR (r)

)
, we have the following result.

Theorem 1 Based on Eqs. (25) and (26), Eq. (24) is upper
bounded by

D
(
PR|X (r |x ) ∥VR (r)

)
6 ln

1

ρ
+ ϑ (y) ln

αρ√
2πeσ (1− ρ)

,

ϑ (y) = Q
(
− y
σ

)
−Q

(
α− y

σ

)
, (27)

where y = ϕ (h11x), and

Q (p) =

∫ ∞

p

1√
2π
e−

x2

2 dx. (28)

Proof: Please refer to Appendix A.
The upper bound in Eq. (23) can be rewritten as

C 6 max
fX(x)

EX
[
ln

1

ρ
+ ϑ (ϕ (h11x)) ln

αρ√
2πeσ (1− ρ)

]
.

(29)
The next step is to solve the optimization problem on the

right-hand side of Eq. (29), subject to the non-negativity,
average optical power, and peak optical power constraints in
Eqs. (15)-(17).

Letting y = ϕ (h11x), we have

EX
[
ln

1

ρ
+ ϑ (ϕ (h11x)) ln

αρ√
2πeσ (1− ρ)

]
= EY

[
ln

1

ρ
+ ϑ (y) ln

αρ√
2πeσ (1− ρ)

]
. (30)

The optimization problem in the right-hand side of Eq. (29)
is formulated as

max
fY (y)

EY
[
ln

1

ρ
+ ϑ (y) ln

αρ√
2πeσ (1− ρ)

]
(31)

s.t.
∫ α
0
fY (y)dy = 1, (32)∫ α

0
yfY (y)dy 6 max

fX(x)

∫ A
0
ϕ (h11x) fX (x)dx, (33)

f (y) > 0. (34)

Let E∗
Y = max

fX(x)

∫ A
0
ϕ (h11x) fX (x)dx in Eq. (33). For

notational simplicity, define the function T (ρ, y) as

T (ρ, y) = ln
1

ρ
+ ϑ (y) ln

αρ√
2πeσ (1− ρ)

. (35)

When y ∈ [0, α], the second derivative of ϑ (y) can be
expressed as

∂2ϑ

∂y2
=

1√
2πσ3

[
e−

(y−α)2

2σ2 (y − α)− e−
y2

2σ2 y

]
< 0. (36)

Note that for all y ∈ [0, α], the second derivative of ϑ (y) is
non-positive, and thus ϑ (y) is concave. Then, we have∫ α

0

fY (y)ϑ (y)dy 6 ϑ

(∫ α

0

fY (y) ydy
)

6 maxϑ (y) .

(37)

From the Eqs. (35) and (37), it is observed that when
ln αρ√

2πeσ(1−ρ) > 0, the second term of T (ρ, y) is concave
with respect to y, and we have

max
fY (y)

EY [T (ρ, y)] 6 T (ρ, ζ∗) , (38)

ζ∗ = min {E∗
Y , α/2} . (39)

When ln αρ√
2πeσ(1−ρ) < 0, the second term of T (ρ, y) is

convex with respect to y, and we have

max
fY (y)

EY [T (ρ, y)] 6 T (ρ, α) . (40)

The next step is to minimize the right-hand sides of E-
qs. (38) and (40) through optimizing ρ, to derive the upper
bound on the SISO system. Note that for ρ ∈ [0, 1], the
second derivative of T (ρ, y) is non-positive, and thus T (ρ, y)
is convex with respect to ρ. The minimum value of T (ρ, y)
occurs when ρ = 1− ϑ (y). Note that 1− ϑ (α) > 1− ϑ (ζ∗),
we have the following result.

Case 1 If

1− ϑ (ζ∗) >

√
2πeσ

α+
√
2πeσ

, (41)

then
C (A, E) 6 T (1− ϑ (ζ∗) , ζ∗) . (42)

Case 2 If

1− ϑ (α) <

√
2πeσ

α+
√
2πeσ

, (43)

then
C (A, E) 6 T (1− ϑ (α) , α) . (44)

Case 3 If

1− ϑ (ζ∗) <

√
2πeσ

α+
√
2πeσ

< 1− ϑ (α) , (45)

then

C (A, E) 6 min {T (1− ϑ (ζ∗) , ζ∗) , T (1− ϑ (α) , α)} .
(46)

Case 4 If

1−ϑ (ζ∗) =
√
2πeσ

α+
√
2πeσ

or 1−ϑ (α) =
√
2πeσ

α+
√
2πeσ

, (47)

then
C (A, E) 6 ln

(
1 +

α√
2πeσ

)
. (48)
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IV. CAPACITY BOUND OF THE NONLINEAR MIMO
SYSTEM

A. Generalized Lower Bound to M ×M MIMO System

According to Eq. (1), the transmission model of an M ×M
MIMO system can be written as

R = Φ (HX) +N , (49)

where X = [X1, X2, · · · , XM ] and R = [R1, R2, · · · , RM ]
denote the transmitted and received vectors, respectively;
H ∈ RM×M

+ denotes the channel matrix with each element
being the link gain of the corresponding transmission path;
N ∼ N (0, σ2I) denotes the noise vector. The MIMO channel
capacity is lower bounded by

C > M

2
ln

[
1 +

e
2
M h(Φ(HX))

2πeσ2

]
. (50)

In commercial communication systems, the receiver often
consists of identical units. Thus, we assume that all receivers
exhibit the same non-linear characteristics. Considering an
M ×M MIMO system, assume that each receiver nonlinear
characteristics take the form as described in Section.II. Define
the vectors Y = [Y1, Y2, · · · , YM ] and Z = [Z1, Z2, · · · , ZM ]
such that Y = Φ (HX) and Z = HX . Given H = h and
Y = y, we have

y = Φ (z) = Φ (hx) , (51)

where yi ∈ [0, αi], i = 1, 2, · · · ,M .
For a given y and h, Eq. (51) may have multiple real solu-

tions. These are denoted as x1, x2, · · · , xi, · · · . Specifically,
the i-th real solution can be described as

Φ (z)x=xi
= y, (52)

For M -dimensional case, ψ (y) is defined as the number of
real solutions that satisfy Eq. (51) for a given y and h.

Based on the Jacobian transformation, the joint PDF of Y1,
Y2, · · · , YM , fY (y), can be expressed as

fY (y) =

ψ(y)∑
i=1

fX (xi)

|J (xi)|

∣∣∣∣
xi=xi(y)

, (53)

where J(xi) represents the Jacobian determinant of xi. If
Eq. (51) has no real solutions for given y and h, then the
joint PDF fY (y) = 0.

Based on Eq. (53), the differential entropy h (Y ) of
Y for a given h is expressed as Eq. (54), where α =
[α0, α1, · · · , αM ].

Letting ui = ψ(y)fX(xi)
|J(xi)|

∣∣∣
xi=xi(y)

in Eq. (12), a lower

bound for Eq. (54) is given by

h (Y ) > −
∫ α

0

ψ(y)∑
i=1

[
fX (xi)

|J (xi)|
ln
ψ (y) fX (xi)

|J (xi)|

]∣∣∣∣
xi=xi(y)

dy.

(55)
By employing the substitution method Φ (hx) = y, E-

q. (55) can be simplified as Eq. (56).

h (Y ) > −
∫ A

0

fX (x)

[
lnψ (y) + ln

fX (x)

|J (x)|

]
dx. (56)

Assuming that each transmitter is discretely placed, each
transmitter has its own independent power supply and driving
circuitry to prevent additional transmitter-side nonlinearities,
positioned independently to reduce subchannel correlation
and ensuring that the channel matrix maintains full rank.
Each LED must comply with the non-negative constraint,
the average power constraint, and the peak power constraint,
which are given as follows,∫A

0
fX (x)dx = 1, (57)∫A

0
xifX (x)dx 6 E , i = 1, 2, · · · ,M, (58)

fX (x) > 0. (59)

Since Eq. (50) holds for all fX (x) that satisfy Eqs. (57)-
(59), a tight lower bound can be obtained by selecting an
appropriate fX (x) that maximizes the right-hand side of
Eq. (56) while meeting the aforementioned constraints. For-
mulating it as a standard optimization problem, similar to the
SISO system, the optimal distribution fX (x) can be expressed
as

fX (x) = |J (x)| e
λ1+

M∑
i=1

λi+1xi−1−ψ(y)
. (60)

Thus,

h (Y ) > −λ1 + 1−
M∑
i=1

λi+1EX [Xi] , (61)

where

EX [Xi] =

∫ A

0

xifX (x)dx. (62)

Let λ∗1, λ∗2, · · · , λ∗i+1 denote the values of λ1, λ2, · · · ,

λi+1 that maximize −λ1 + 1 −
M∑
i=1

λi+1EX [Xi]. Therefore,

the lower bound on the M ×M MIMO system is given by

C (A, E) > M

2
ln

1 + e
2
M

(
−λ∗

1
+1−

M∑
i=1

λ∗
i+1

EX [Xi]

)
2πeσ2

 . (63)

B. Generalized Upper Bound to M ×M MIMO System

For the transmit vector X = [X1, · · · , XM ] and the receive
vector R = [R1, · · · , RM ], when h is known, the conditional
PDF PR|X (r|x) is given by

PR|X (r |x ) =
1

(2πσ2)
M
2

e−
∥r−Φ(hx)∥2

2σ2 . (64)

Referring to Eq. (23), the upper bound on the M×M MIMO
system is given by

C 6 max
fX(x)

EX

[
D
(
PR|X (r |x ) ∥VR (r)

)]
. (65)

D
(
PR|X (r |x ) ∥VR(r)

)
=

∫
PR|X (r |x ) ln

PR|X (r |x )

VR(r)
dr.

(66)
We define the index set S = {1, 2, 3, ....,M} and the sub-

index sets S1, S2, · · · , SM , where

Si={(s1, s2, · · · , si)| s1 < · · · si, s1, · · · , si ∈ S} , (67)
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h (Y ) = −
∫ α

0

ψ(y)∑
i=1

fX (xi)

|J (xi)|

∣∣∣∣
xi=xi(y)

 ln

ψ(y)∑
i=1

fX (xi)

|J (xi)|

∣∣∣∣
xi=xi(y)

dy. (54)

where Si has a total of CiM elements. We define Si (j) to be
the jth element in the set Si, Ŝi (j) to be the complement of
Si (j) with respect to S, that is, Ŝi (j) contains all the elements
that are in S but not in Si (j), Si(j, k) to be the kth element in
Si (j) and rSn(j) =

(
rSn(j,1), rSn(j,2), · · · rSn(j,n)

)
, αSn(j) =(

αSn(j,1), αSn(j,2), · · ·αSn(j,n)

)
, respectively. Given the M -

dimensional amplitude constraint as defined in Eq. (3), we
have selected a test density VR(r) as Eq. (68).

In Eq. (68) ρ0, ρ1, · · · , ρM−1 ∈ [0, 1] are to be opti-
mized. Similarly, the test density is uniform in the closed
area {rS | rS ∈ [0,αS ]} and is a “split and scaled” Gaussian
distribution in area

{
rSn(j)

∣∣ rSn(j) ∈
[
0,αSn(j)

]}
. Assume

that M = 2, the test density in R1OR2 plane is shown in
Fig. 4.

O 1
r

2
r

I

II

III IV

VVI

VII

VIII

IX

1
a

2
a

VIVIVIVIVIVI

Fig. 4. Test density VR (r) for 2×2 MIMO OWC.

Substituting Eqs. (64) and (68) into Eq. (66), we have the
following result.

Theorem 2 For Eqs. (64) and (68), Eq. (66) is upper bounded
by

D
(
PR|X (r |x ) ∥VR(r)

)
6 T (ρ0, · · · , ρM , ϕ (h1x) , · · · , ϕ (hMx)) , (69)

where hi = [hi1, hi2, · · · , hiM ] is the ith row of channel ma-
trix h, and T (ρ0, · · · , ρM , ϕ (h1x) , · · · , ϕ (hMx)) is defined
by Eq. (70).

Proof: Please refer to Appendix B.
After scaling, the problem of finding the upper bound

of channel capacity equivalent to maximizing the right-hand
side of Eq. (69) through the selection of fX (x), under the
constraints similar to Eqs. (57)-(59).

Formulate a new optimization problem as an upper bound

to the original optimization problem. The new optimization
problem is defined as

max
fY (y)

EY [T (ρ0, · · · , ρM , ϕ (h1x) , · · · , ϕ (hMx))] (71)

s.t.
∫ α

0
fY (y)dy = 1, (72)∫ α

0
yifY (y)dy 6 E∗

Yi
, i = 1, 2, · · · ,M, (73)

fY (y) > 0. (74)

The assertion that the optimal value of the new optimization
problem is an upper bound to the optimal value of the original
problem has been discussed in Section III-B and is omitted
here for brevity.

Since ϑ (α, y) is a concave function with respect to y, we
have

EY [Q(αi, yi)] 6 Q (αi,EY [Yi]) 6 maxQ (αi, yi) . (75)

Minimizing the upper bounds through optimizing ρ0, ρ1, · · · ,
ρM can yield relatively tight upper bounds. The computation
of these function maximums and minimums can be conducted
through numerical simulations on a computer.

V. SIMULATION RESULTS AND DISCUSSION

This section conduct a numerical analysis of the upper and
lower bounds of channel capacity for OWC with nonlinear
receiver. Given the diversity in the performance forms of the
“input-output” nonlinear functions of receivers, this section
outlines several common nonlinear functions and assumes a
piecewise form of a nonlinear function. Based on the simula-
tion results, this section discusses the relationship among the
upper and lower bounds and the forms of nonlinear functions,
considering factors such as average power constraints, peak
power constraints, and link gain. We consider four kinds of
nonlinear receiver functions. The first is the nonlinear hard
clipping function, typically caused by the non-ideal character-
istics of ADCs and APDs, given by

ϕ (z) =

{
z 0 6 z < β

β β 6 z
. (76)

At this case, ψ(β) = ∞.
The second is the nonlinear soft clipping function, usually

due to the non-ideal characteristics of power amplifiers, is
given by

ϕ (z) =
βz

(1 + z2k)
1
2k

, (77)

where β represents the clipping threshold, and k is a model
parameter.

Another nonlinear receiver function is described by a poly-
nomial approximation model, typically due to the non-ideal
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VR (r) =



1−
M−1∑
k=0

ρk

M∏
j=1

αj

{rS | rS ∈ [0,αS ]}

ρn

(2πσ2)
M−n

2
n∏

k=1

αSn(j,k)C
n
M

e−
∥|rSn(j)−αSn(j)/2|−αSn(j)/2∥2

2σ2
{
rSn(j)

∣∣ rSn(j) ∈
[
0,αSn(j)

]} . (68)

T (ρ0, · · · , ρM , ϕ (h1x) , · · · , ϕ (hMx)) = −1

2
ln (2πe)

M |K|+
M∏
i=1

ϑ (αi, yi) ln

M∏
j=1

αj

1−
M−1∑
k=0

ρk

+
M−1∑
m=0

Cm
M∑

n=1


∏

p∈Sm(n)

ϑ (αp, yp)
∏

q∈Ŝm(n)

[1− ϑ (αq, yq)] ln

(
2πeσ2

)M−m
2

∏
l∈Sm(n)

αlC
m
M

ρm

.
ϑ (α, y) = Q

(
− y
σ

)
−Q

(
α− y

σ

)
. (70)

characteristics of LNAs, given by

ϕ (z) = β1z + β2z
2 + β3z

3 + β4z
4 + · · · , (78)

where βi denotes the gain at the ith order (i = 1, 2, 3, · · · ),
with β1 known as the linear gain.

The last nonlinear receiver function considers the complex
form of the nonlinear function and opts for a piecewise
approximation, given by

ϕ (z) =

{
− γ
β2 z

2 + 2γ
β z 0 6 z < β

γe−z+β β 6 z
. (79)

By employing polynomial and piecewise approximations,
we ensure that our model can capture a wide variety of nonlin-
ear behaviors in practical systems. Although these two types
of functions may not encompass all possible nonlinearities,
they offer a high degree of generality and flexibility. This
approach allows us to demonstrate the robustness and broad
applicability of our analysis, which can be adapted to many
real-world communication scenarios.

A. SISO System Simulation Results

Figure 5 shows the relationship between the upper and lower
bounds of the channel capacity of a SISO OWC system with
linear receiver (ϕ(z) = z) and the peak power constraint A
under different noise intensities (h11 = 0.9, ε = 0.9). If the
receiver “input-output” function is ideally linear, then as the
peak power constraint is relaxed, the upper and lower bounds
of the channel capacity increase linearly with log10A, and the
gap between the upper and lower bounds also decreases.

Figure 6 shows the relationship between the upper and lower
bounds of the channel capacity for a SISO OWC system and
the peak power constraint A (h11 = 0.9, ε = 0.9).
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Fig. 5. Upper and lower bounds with respect to A for SISO OWC system
with linear receiver (h11 = 0.9, ε = 0.9).

The results indicate that the form of the receiver nonlinear
function significantly impacts the trend of channel capacity.
In Figs. 6(a), (b), and (d), as the allowable peak power
increases, the upper and lower bounds initially increase and
then becomes stable, which contrasts with the increases seen
in Fig. 5 as A increases for a linear receiver system. Addi-
tionally, increasing noise intensity degrades channel capacity
and system performance, but the turning points and trends of
the channel capacity bounds relative to A remain unchanged.
This suggests that the recommended peak power constraints
for the transmitted signal have consistency under different
noise conditions for a given nonlinear receiver system. This
conclusion is particularly important for outdoor OWC, where
the granular noise from APDs increases with the intensity of
background radiation. Moreover, the derivation of the upper
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Fig. 6. Upper and lower bounds with respect to A for SISO OWC system with nonlinear receiver (h11 = 0.9, ε = 0.9). (a) Hard clipping (β = 1). (b)
Soft clipping (β = 1, k = 1). (c) Polynomial approximation (β1 = 1.5, β2 = −0.75, β3 = 0.1). (d) Piecewise approximation (γ = 1, β = 1).

and lower bounds of the channel capacity can guide the
design of encoding strategies and power control schemes
under different noise levels. Moreover, as the noise intensity
increases, the gap between the upper and lower bounds of
channel capacity also becomes larger since the entropy of
noise increases with noise intensity. Moreover, the difference
between the left and right terms in the Eq. (6) increases, thus
widening the gap between the lower bound of the channel
capacity and the actual channel capacity.

Figure 7 shows the gap between the upper and lower bounds
of the channel capacity of a SISO nonlinear receiver system
under different nonlinear receiver functions in relation to ε
(h11 = 0.9, A = 3, σ = 0.01). The results show that as ε
decreases, the gap between the upper and lower bounds of
channel capacity also widens. This is due to the form of the
VR(r) function, assuming the received signal distribution as
a combination of a uniform distribution and two symmetrical
single-sided truncated Gaussian distributions. This form im-
plicitly suggests that the impact of the peak power constraint
is greater compared to the average power constraint. When
ε is greater than 0.3, the gap between the upper and lower
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Fig. 7. The gap between the upper and lower bounds for SISO OWC system
with respect to ε (h11 = 0.9, A = 3, σ = 0.01).
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bounds of channel capacity converges to a smaller value. This
indicates that the proposed channel capacity analysis method
performs better under weaker average power constraints.

Figure 8 illustrates the relationship between the upper and
lower bounds of the channel capacity of a SISO nonlinear
receiver system and the link gain h11 under different nonlinear
functions. The results indicate that the changes in channel
capacity with increasing h11 are closely linked to the form of
the nonlinear function used. For the four nonlinear functions
simulated, at lower levels of h11, increasing h11 effectively
enhances the channel capacity. However, as h11 continues to
rise, the changes in channel capacity reach a peak and then
stabilize. This suggests that if the receiver “input-output” func-
tion is nonlinear, reducing the distance between the transmitter
and receiver, or using lenses to increase the link gain between
the transmitter and receiver, may not necessarily result in
improvements in system channel capacity. This emphasizes the
importance of considering receiver nonlinearity in the design
of communication schemes.

B. 2×2 MIMO System

This section evaluates the impact of the nonlinear charac-
teristics of receivers on the upper and lower bounds of the
channel capacity of MIMO systems, and presents numerical
results for the channel capacity bounds under two potential
channel matrices, h1 and h2

h1 =

[
0.9 0

0 0.9

]
,h2 =

[
0.7 0.2

0.3 0.6

]
, (80)

where h1 is a diagonal matrix with equal diagonal elements,
indicating independent and equivalent signal paths between
the receiver and transmitter; while h2 is a non-diagonal
matrix, corresponding to transmission signals from multiple
transmitters potentially traveling through multiple paths to
each receiver, leading to signal interference.

Figures 9(a) and (b) show the relationship between the upper
and lower bounds of the channel capacity of a 2×2 MIMO
linear receiver system under different noise intensities relative
to the peak power constraint A (ε = 0.9). In comparison with
Fig. 5, if the receiver “input-output” function is linear, as the
allowable peak power increases, the upper and lower bounds
grow with log10A, approaching a linear increase at higher
values of A.

Figures 10 and 11 show the relationship between the chan-
nel capacity and the peak power constraint A for a 2×2 MIMO
nonlinear receiver system under different channel matrices h1

and h2, under varying noise conditions.
Clearly, the form of the receiver’s nonlinear function signif-

icantly affects the trends in MIMO channel capacity. Compar-
ing Figs. 6 and 10, MIMO systems exhibit higher upper and
lower bounds of channel capacity than SISO systems. Observ-
ing the capacities under channel matrices h1 and h2 in Figs. 10
and 11, it is evident that when there is less interference among
the system’s transmitting antennas, the upper and lower bounds
derived from the channel capacity analysis method proposed in
this chapter are tighter and closer to the actual signal capacity.
Unlike SISO, the MIMO receiver processes signals from

multiple transmitters, enlarging the solution set and increasing
the difference between the pre- and post-approximation results.
Additionally, since each transmitter adheres to independent
power constraints, increasing the number of transmitters leads
to greater total transmission power, making it more likely
for receivers to operate in nonlinear regions, thus affecting
the accuracy of signal reception. This necessitates that OWC
system designs fully consider the dynamic range of the channel
and the nonlinear characteristics of receivers, guiding the
design of transmission signal codebooks based on this.

VI. CONCLUSION

In this work, we provide a generic OWC model incorpo-
rating receiver nonlinearity, background radiated noise, and
thermal noise. Our approach is firmly grounded in established
information-theoretic methods for capacity analysis. The lower
and upper bounds have been derived for SISO and MIMO
OWC systems using EPI and dual expression. Numerical
results verify the tightness of the derived capacity bounds and
highlight the significant relationship between channel capacity
and receiver nonlinearity. We believe that as more research
emerges on non-monotonic nonlinearities in OWC systems,
future experimental studies will likely be able to build on the
theoretical foundations established in this work.

APPENDIX A

Substituting Eqs. (25) and (26) into Eq. (24), we obtain
Eq. (81). Via expanding each sub-expression, we have

c1 = −1

2
ln
(
2πeσ2

)
, (82)

c2 =
[
1−Q

(
− y
σ

)]
ln

√
2πeσ

ρ
+

1

2
ϖ
( y
σ

)
, (83)

c3 = ϑ (y) ln
α

1− ρ
, (84)

c4 = Q

(
α− y

σ

)
ln

√
2πeσ

ρ
+

1

2
ϖ

(
α− y

σ

)
, (85)

where Q (·) is the right tail function of the standard normal
distribution, defined as

Q (p) =

∫ ∞

p

1√
2π
e−

x2

2 dx, (86)

and
ϖ (p) = p2Q (p)− p√

2π
e−

p2

2 . (87)

It can be proven that ϖ (p) < 0 holds for all p > 0.
Therefore, for Eqs. (83) and (85), we have

c2 <
[
1−Q

(
− y
σ

)]
ln

√
2πeσ

ρ
, (88)

c4 < Q

(
α− y

σ

)
ln

√
2πeσ

ρ
. (89)

Inserting the scaled results of these sub-expressions into
Eq. (81), it can be proven that Eq. (24) possesses the following
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Fig. 9. Upper and lower bounds with respect to A for 2×2 MIMO OWC system with linear receiver (ε = 0.9). (a) h = h1. (b) h = h2.

upper bound

ln
1

ρ
+ ϑ (y) ln

αρ√
2πeσ (1− ρ)

. (90)

APPENDIX B
Substituting Eqs. (64) and (68) into Eq. (66), we have

D
(
PR|X (r |x ) ∥VR(r)

)
= − ln

(
2πeσ2

)
+

∫ ∞

−∞

1

(2πσ2)
M
2

e−
∥r−Φ(hx)∥2

2σ2 ln
1

VR(r)
dr.

(91)
When r1 ∈ [0, α1], r2 ∈ [0, α2], · · · , rM ∈ [0, αM ], we

have Eq. (92).
When r1, r2, ,· · · , rM contain m elements that satisfy ri ∈

[0, αi], with their indices denoted as Sm(m), we have Eq. (93).
Inserting the scaled-down sub-expressions into Eq. (91), it

can be easily demonstrated that Eq. (66) is upper bounded by
Eq. (70).
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Fig. 11. Upper and lower bounds with respect to A for 2×2 MIMO OWC system with nonlinear receiver (h = h2, ε = 0.9). (a) Hard clipping (β = 1).
(b) Soft clipping (β = 1, k = 1). (c) Polynomial approximation (β1 = 1.5, β2 = −0.75, β3 = 0.1). (d) Piecewise approximation (γ = 1, β = 1).
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